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Abstract Outlier detection and cleaning procedures were
evaluated to estimate mathematical restricted variogram
models with discrete insect population count data. Be-
cause variogram modeling is significantly affected by
outliers, methods to detect and clean outliers from data
sets are critical for proper variogram modeling. In this
study, we examined spatial data in the form of discrete
measurements of insect counts on a rectangular grid.
Two well-known insect pest population data were ana-
lyzed; one data set was the western flower thrips,
Frankliniella occidentalis (Pergande) on greenhouse
cucumbers and the other was the greenhouse whitefly,
Trialeurodes vaporariorum (Westwood) on greenhouse
cherry tomatoes. A spatial additive outlier model was
constructed to detect outliers in both the isolated and
patchy spatial distributions of outliers, and the outliers
were cleaned with the neighboring median cleaner. To
analyze the effect of outliers, we compared the relative
nugget effects of data cleaned of outliers and data still

containing outliers after transformation. In addition, the
correlation coefficients between the actual and predicted
values were compared using the leave-one-out cross-
validation method with data cleaned of outliers and
non-cleaned data after unbiased back transformation.
The outlier detection and cleaning procedure improved
geostatistical analysis, particularly by reducing the
nugget effect, which greatly impacts the prediction var-
iance of kriging. Consequently, the outlier detection and
cleaning procedures used here improved the results of
geostatistical analysis with highly skewed and extremely
fluctuating data, such as insect counts.

Keywords Variogram models Æ Spatial additive model Æ
Outlier cleaner Æ Western flower thrips Æ Greenhouse
whitefly Æ Box–Cox transformation

Introduction

The spatial dependency of insect pests should be taken
into consideration when ecologically based pest man-
agement programs are implemented because most insect
pests are observed at specific points in their habitats and
appear to be concentrated within a given spatial distri-
bution (Southwood 1978; Binns and Nyrop 1992; Park
et al. 2004). To implement strategies to control insects, it
is often necessary to characterize whether the insect
species is equally abundant throughout the entire sam-
pling space and whether its abundance at sampling
locations is positively associated with the occurrence of
certain spatially aggregated environmental conditions
(Nansen et al. 2003). Geostatistics is a useful tool for
interpreting spatial patterns and the dependency of
organisms. Variogram, which is widely used in practical
geostatistics, is the average degree of similarity between
sample values as a function of their separation distances
(Isaaks and Srivastava 1989; Rossi et al. 1992; Cressie
1993; Kitanidis 1997). If the two values are close to-
gether, their difference will typically be small, and as the
values get farther apart, their differences become larger
as well as the variance of the difference.
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For variogram modeling, the most important step is
appropriately calculating the experimental variogram
from the field spatial data (Olea 2007). Once the
appropriate calculation has been performed, the best
variogram model can be selected without the need for
any special or additional analysis. The accuracy and
precision of kriged predictions can depend on these fit-
ted variogram models, which in turn may be significantly
influenced by the initial method used to estimate the
variogram (Olea 2006).

Srivastava and Parker (1989) reported that the vari-
ogram often erratically and unreliably characterizes the
spatial dependency, especially when the data are highly
skewed or when the data are aggregated, which is likely
to be the case in many insect count data sets. Geosta-
tistics involves the fitting of spatially continuous models
to spatially discrete data (Diggle et al. 2010). The vari-
ogram model may also provide an incomplete descrip-
tion of the spatial pattern because the variogram is
strongly affected by small-scale or local mean and vari-
ance differences (Rossi et al. 1992).

Some transformation methods have been developed
to reduce the effect of skewed and biased data for geo-
statistical analyses. Bardossy and Kundzewicz (1990)
reported that a power transformation will change highly
skewed raw data so that they more closely resemble the
normal distribution, leading to more robust experimen-
tal variograms. It has often been reported that envi-
ronmental variables are lognormal (Sichel 1952; Miesch
and Riley 1961) or positively skewed (Zhang et al. 1995;
Zhang and Selinus 1998) and that data transformation is
necessary to normalize such data sets. Box–Cox data
transformations have been widely accepted as effective
data transformation methods, conferring normality on
skewed data (Box and Cox 1964). Park et al. (2004)
evaluated mathematical restricted variogram models
using greenhouse whitefly data after conducting various
data transformations.

Data transformation of raw data tends to improve
approximation to normality by reducing the values of
skewness; however, data transformation does not seem
to solve the problems caused by outliers (Kerry and
Oliver 2007). In statistics, the term outliers refer to
abnormally large or small values sometimes seen on
histograms. The problem when outliers are present is
that the mean and the variance are disproportionately
affected by a few extreme values. These outliers result in
the inappropriate calculation of experimental vario-
grams. Variogram noise resulting from outliers can even
completely mask the spatial structure and produce a
pure nugget effect (Liebhold et al. 1993).

Statistical parametric methods that assume a known
underlying distribution of the observations (e.g., Haw-
kins 1980; Rousseeuw and Leory 1987; Barnett and
Lewis 1994) or are based on statistical estimates of un-
known distribution parameters (Hadi 1992) are fre-
quently used to detect outliers. These methods flag
outliers as those observations that deviate from the
model assumptions. Another simple way to detect

outliers in spatial data sets is based on visualization,
namely, illustrating the distribution data difference in a
figure and visually identifying the points in particular
portions of the figure that are outliers included in
frequency graphs, such as histograms and box plots
(Goovaerts 1997; Zar 1999). One potential problem with
these methods is that they use simple arithmetic averages
to estimate the overall behavior of a set of neighbors,
and they do not consider the impact of spatial rela-
tionships on the neighborhood comparison. The
h-scattergram is useful for observing outliers or spurious
values and can be part of a clean-up process. However,
the decision to remove aberrant data should not be
made based on a single lag distance, since the same
datum may not yield outlier pairs for the other lags or in
other directions (Goovaerts 1997). In addition, the
h-scattergram method identifies outliers in a subjective
manner.

The other methods used to identify outliers depend
on performing statistical tests to discover local incon-
sistency. Breunig et al. (2000) suggested that, in some
situations, local outliers are more important than global
outliers. They proposed the concept of a local outlier
factor, which defines how isolated an object is with re-
spect to its surrounding neighborhood rather than to the
whole data set. In addition, Mugglestone et al. (2000)
proposed the neighboring median method to detect and
clean outliers in which each outlier is replaced by the
median of its four nearest neighbors on the lattice.

In this paper, we evaluated a novel method to detect
and clean outliers for geostatistical analysis of insect
count data. Two species of insect populations, the wes-
tern flower thrips, Frankliniella occidentalis (Pergande),
and the greenhouse whitefly, Trialeurodes vaporariorum
(Westwood), were counted in cucumber and cherry to-
mato greenhouses, respectively. Both species are very
serious pests to many greenhouse crops, including
cucumbers and cherry tomatoes (Lewis 1973; Mound
and Halsey 1978), and they are resistant to many
insecticides (Immaraju et al. 1992; Sanderson and Roush
1992). We also compared and validated the resulting
geostatistical parameters using the leave-one-out cross-
validation method.

Materials and methods

Study plot and sampling

Thrips population

Frankliniella occidentalis populations were monitored in
two commercial cucumber greenhouses (TGA and TGB)
located near Jeju City (33�29¢55¢¢N, 126�29¢55¢¢E) on
Jeju Island, Korea, from May to July of 1996. Three-
week-old greenhouse-grown cucumber (Cucumis sativus
L.) plants were transplanted on March 5 in each green-
house. Both greenhouses were 24 · 45 m and surrounded
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by potato fields. All greenhouses were managed using
standard recommended production practices, including
the use of fertilizers and pesticides at the grower’s dis-
cretion. The surveyed greenhouses consisted of 12–15
beds on approximately 0.8-m centers, and plants were
grown using the modified vertical cordon training sys-
tem (Cho et al. 1998). Horizontal support wires were
positioned directly over the row of plants at a height of
1.8–2.0 m. Initially, each plant was trained vertically
along and around a plastic twine support and fastened
with plastic snap-on clips. As the plant reached the top
supporting wire, the grower removed the clips and re-
leased the reserved twine, which moved the plant
approximately 0.3 m closer to the ground so that the
lower section of the stem was on the ground. Therefore,
the youngest leaf was always at the top of the canopy.

Cucumber leaves were visually inspected weekly to
measure temporal and spatial changes in the density of
the thrips population. To determine the temporal
abundance of thrips, at least 30 plants were selected
randomly, and the numbers of adult and immature
thrips from the seventh leaf from the growing tip were
counted. Those leaves were fully matured, non-senesced
leaves and were located approximately 1.0 m above
ground level.

To analyze the spatial distribution patterns of thrips,
an approximate quadrat of permanent sampling posi-
tions was established for each greenhouse. The sampling
array for each greenhouse consisted of 72 visual counts
in TGA and 55 in TGB, which were laid out in 12 · 6
quadrat patterns in TGA and 11 · 5 quadrat patterns in
TGB. The distance between the plant stations was
approximately m in the down-row and approximately
5 m in the cross-row. Thus, each quadrat covered
approximately 15 m2 and contained approximately 50
plants. One cucumber plant located at the center of the
quadrat was selected, and the numbers of immature
thrips were counted on each sampling date. TGA and
TGB were surveyed six and eight times, respectively,
throughout the growing season.

Whitefly population

Two commercial cherry tomato (Lycopersicon esculen-
tum) greenhouses (WGA and WGB) in Buyeo
(36o15¢55¢¢N, 126o53¢56¢¢E), Chungcheongnam-do,
Korea, were selected for sampling of T. vaporariorum
larvae during the growing season of 1998. Each green-
house was about 3,000 m2 in size. In each greenhouse,
cherry tomatoes were transplanted in early August and
early November. Plants were spaced �0.3 m apart in a
single row on beds (height 0.1 m, width 0.5 m) of soils
covered with black polyethylene mulch. The greenhouses
surveyed consisted of 12–15 beds on approximately 0.8-
m centers, and plants were grown using the ventral
cordon system (Papadopoulos 1991). Horizontal sup-
port wires were positioned directly over the row of
plants at a height of 1.8–2.0 m. Initially, each plant was

trained vertically along and around the plastic support
twines and tied with plastic snap-on clips. As the plant
reached the top supporting wire, the clips were released,
allowing the plant to be lowered by approximately 0.3 m
such that the lower section of the stem lay on the
ground. The lowest foliage was removed to promote
flower and fruit production, while the youngest foliage
was at the top of the canopy.

Late larvae (3rd and 4th instars) of greenhouse
whitefly were counted visually on a seven-leaflet leaf
near the middle of each cherry tomato plant that was
sampled (approx. 0.8–1.2 m above ground). Approxi-
mate grids of 40 permanent sampling locations were
established in each greenhouse; each grid measured
approximately 35 m2 and contained approximately 180
plants. The distance between sampling location was
approximately 7 m within the rows and approximately
5 m across the rows.

Geostatistical modeling

Data transformations

As in conventional statistics, a normal distribution for
the variable under study is desirable in linear geostatis-
tics (Clark and Harper 2000). Although normality may
not be strictly required, serious deviations from nor-
mality, such as very high skewness and the presence of
outliers, can impair the variogram structure and mod-
eling (McGrath et al. 2004). It has often been reported
that environmental variables are lognormal (Sichel 1952;
Miesch and Riley 1961) or positively skewed (Zhang
et al. 1995; Zhang and Selinus 1998), and data trans-
formation is necessary to normalize such data sets.

In our study, the Box–Cox transformation was used
to make the data more normally distributed and with
less skewness (Box and Cox 1964). The Box–Cox
transformation is given by:

x0 ¼ xk if k 6¼ 0
lnðxÞ if k ¼ 0

�
; ð1Þ

where x0 is the transformed value, and x is the value to
be transformed. For a given data set, the parameter k is
estimated based on the assumption that the transformed
values are normally distributed. When k = 0, the
transformation becomes the logarithmic transformation.
Bartlett (1936) proposed the transformation of data as
x0 ¼ xþ 0:5ð Þ. This transformation is preferred on the-
oretical grounds and is especially preferable when some
of the observed values are small numbers, particularly
for data sets that contain a high number of zero counts.
Park et al. (2004) demonstrated that natural logarithmic
(k = 0) and fourth root transformations (k = 1/4) with
the actual value of +0.5 were better than any other
transformations for aggregated insect pest populations.
Thus, we applied these two data transformations to the
raw data sets before the outlier analysis was conducted.
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Outlier detection and data cleaning

Outlier detection and cleaning steps used in our analysis
were based on the spatial additive outlier model (Eq. 2),
which is a generalization of models by Hawkins and
Cressie (1984) as the basis for a robust form of kriging
and by Martin and Yohai (1986, 1991) to study outliers
in time series:

Yu;v ¼ Xu;v þ Zu;vvu;v; ð2Þ

where Yu;v, a ‘possible outlier included’ part, is an
observation at the point of ðu; vÞ on the U · V lattice
ðu ¼ 1; . . . ;U ; v ¼ 1; . . . ; V Þ, Xu;v is an ‘outlier not in-
cluded-core’ part, Zu;v is an assignment process that
takes the values 0 and 1, and vu;v is a ‘possible outlier
part’ that is superimposed on X. The v is typically taken
to be large compared to the variance of X with mean
zero (Nirel et al. 1998; Mugglestone et al. 2000).

The spatial outlier cleaner was calculated as follows:

w yu;v; M ; g0; g1
� �

¼ yu;v; if yu;v � g0ðyu;vÞ
�� �� � M

g1ðyu;vÞ; otherwise

�
:

ð3Þ

A g0 is the median of the observed values. The M
value is called the ‘turning’ constant, and it controls the
rate of replacement (Mugglestone et al. 2000). The
optimal M value can be derived by finding the minimum
of var WðMÞf g � 1½ �2 (Nirel et al. 1998). An observation
at the point of ðu; vÞ, yu;v, was determined to be an
outlier if yu;v � g0ðyu;vÞ

�� ��[M . The data cleaner replaces
each outlier by g1ðyu;vÞ, leaving the rest of the obser-
vation unchanged. A function of g1 is obtained by using
simple median smoothing, replacing each outlier by the
median of its four nearest neighbors on the sampling
value. The detailed computation of the M value and
outlier detection and cleaning protocols can be found in
Mugglestone et al. (2000); however, it is not easy to
apply other systems for the detail method in given
mathematical references, especially calculation of the M
value. Thus, we provided the script code for computing
the M value using R language (Ihaka and Gentleman
1996) (see Appendix) and calculatedM values for outlier
detection and cleaning in each sample week and data
transformation separately.

Estimation of mathematical restricted
variogram parameters

Experimental variograms were calculated both before
and after the outliers were cleaned from the data sets.
Directionality was not included into the variogram
analysis because the data sets used in this study had an
insufficient number of paired observations (<30)
within a given direction (Nansen et al. 2003). There-
fore, isotropy was assumed and omnidirectional vari-
ograms were used for all the data sets throughout this
paper.

The experimental variograms were calculated from
the data counted, according to the following equation:

ĉðhÞ ¼ 1

2NðhÞ
XNðhÞ
i¼1

zðxiÞ � zðxi þ hÞ½ �2; ð4Þ

where ĉðhÞ is the estimated experimental variogram
value for lag distance h, N(h) is the number of pairs of
points separated by h, and z(xi) and z(xi + h) are the
two data points separated by h. Experimental vario-
grams before and after the outliers were cleaned from
the data set were estimated for each greenhouse sam-
pling week. Experimental variograms were calculated
using a lag distance of 3.0 m with a tolerance ±2.0 m
for the thrips population and 5.0 m with a tolerance
±3.0 m for the whitefly population. The most common
choice for the lag tolerance is one-half the lag distance
between two neighboring classes. This results in an in-
crease in the number of data pairs that can be used in the
variogram calculation (Isaaks and Srivastava 1989). In
geostatistical analysis, at least 30 data pairs per lag
distance are required to adequately estimate the variance
(Isaaks and Srivastava 1989), and the maximum lag
distance for all variograms should be at least half the
shortest dimension of the sampling space (Nansen et al.
2003). In this study, the area surveyed in each cucumber
greenhouse for the thrips population and in each cherry
tomato greenhouse for the whitefly population was
24 · 45 m and 44 · 62 m, respectively, which demon-
strated that the variograms could not ideally account for
lag distances >12.0 m for the thrips population and
>22.0 m for the whitefly population, respectively.

The experimental variograms were modeled using the
following three mathematical restricted variogram
models (Cressie 1993).

The spherical model

cðhÞ ¼ C0 þ 3h
2a� 1h3

2a3

� �
r2 for 0 � h � a

C0 þ r2 for h � a

(
; ð5Þ

where C0 is the nugget variance, r2(r2 > 0) is the
structural variance, and a (a > 0) is the effective range.

The exponential model

cðhÞ ¼ C0 þ r2 1� exp � h
l

� 	
 �
; ð6Þ

where C0 is the nugget variance, r2(r2 > 0) is the
structural variance, and l(l > 0) is the length parameter,
and the effective range is a � 3l

The Gaussian model

cðhÞ ¼ C0 þ r2 1� exp � h2

l2

� 	
 �
; ð7Þ

where C0 is the nugget variance, r
2(r2 > 0) and l(l > 0)

are the structural variance and length parameter,
respectively. The effective range a is a � 7l/4 (Srivastava
and Parker 1989; Cressie 1993).
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For all three of the mathematical restricted variogram
models, C0 + r2 is commonly referred to as the sill. The
range is defined as the distance at which the data are no
longer autocorrelated. Lower ranges indicate that the
data are correlated only with data in close proximity, and
high ranges indicate that the data are correlated over
much larger distances. A mathematical restricted vario-
gram model was fitted to an experimental variogram
using optimization techniques, in the form of a nonlinear
weighted least squares regression, and the three vario-
gram models were evaluated based on the weighted sum
of square residuals ðQ � ðhÞÞ (Cressie 1985).

Validations with leave-one-out method

In order to properly compare the results of the mathe-
matical restricted variogram parameters, comparison
should be made with the same data treatment, because
the means and variances of each of the treated data sets
are on different scales (Zar 1999). In our study, the
performance of the outliner detection and cleaning sys-
tem was assessed using a leave-one-out cross-validation
procedure (Cressie 1993; Kohavi 1995). The leave-one-
out cross-validation is a commonly applied method in
geostatistics because no reserved data are required for
data validation. This approach works by first deleting
one data point at a given position and then performing
kriging with the remaining sample values to estimate the
value at the location of the deleted sample. This proce-
dure is repeated for all of the data points presented in a
data set. For the cross-validation results, the final esti-

mates are calculated with the back-transformed value
obtained by the leave-one-out procedure. Back-trans-
formation of exp(x) and x4 is used for logarithmic and
fourth root transformation, respectively.

To validate outlier cleaning using the leave-one-out
method, four sampling weeks were selected: one from
each greenhouse. Thrips counts from the fifth sample
week at TGA and the fourth sample week at TGB were
selected; for the whitefly data sets, the ninth sample week
at WGA and the second at WGB were selected. The
reason for selecting these data sets is that they showed
maximum and minimum mean densities in each insect
pest population (see Fig. 1).

The original data were then compared with the cor-
responding leave-one-out estimates for all sample
points. Estimation errors were evaluated using the root
mean squared error (RMSE), and correlation between
the estimates and original data was also investigated.
The correlation coefficients between the outlier-cleaned
and outlier-included data were compared using Fisher’s
Z transformation test (Zar 1999). If the relationship
between the cross-validation results and the actual val-
ues was highly positive, we can conclude that the esti-
mated parameters properly explained the spatial
dependency.

Statistical tools

The S-Plus program with SPATIALSTATS module
(ver. 6.0, release 2) and SAS PROC NLIN were used to
calculate experimental variograms, to estimate the
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larvae in the two cucumber
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weighted least squares of the mathematical restricted
variogram model parameters, and to validate the leave-
one-out method (SAS Institute 1996; Kaluzny et al.
1998; Insightful Corporation 2001).

Results

Data description and outlier cleaning

Mean densities of thrips and whiteflies fluctuated be-
tween greenhouses and sampling times (Fig. 1). At TGA
and TGB, the mean densities of thrips varied from 1.3 to
37.9 and from 15.5 to 136.4 per leaflet, respectively. At
WGA and WGB, the mean of whiteflies varied from 0.9
to 12.8 and from 0.7 to 6.8 per leaflet, respectively. The
fluctuations in the densities of the thrips were more in-
tense than those of the whitefly densities.

To evaluate the raw data sets, the variance-to-mean
ratio (VMR) and the percentage of the zero counts in the
data set from each greenhouse and sample week were
calculated (Table 1). The VMR provides a convenient
measure of the degree of over-dispersion or aggregation
of insect populations in the fields. All population count
data were highly aggregated (VMR � 1), which occurs
when there are more differences between low and high
counts.

More than 20% of the zero counts were observed in
nine of 32 count cases, namely, the third, fourth, and
fifth sample weeks in TGA, the second, fourth, fifth,
and sixth sample weeks in WGA, and the second and
fourth sample weeks in WGB greenhouse (Table 1).
Park et al. (2004) reported that no data transforma-
tions for analyzing the geostatistics were satisfactory
for correcting data sets when the empty grids (zero
counts) in the sample data consisted of >20% of the
total samples.

Estimation of mathematical restricted variogram models

The outlier cleaning procedure was applied to the
transformed data sets with ln xþ 0:5ð Þ and xþ 0:5ð Þ1=4.
The proportions of the data points identified as outliers
are listed in Table 1. These varied between sample weeks
and greenhouses, but all the data sets contained at least
one outlier. Of all data sets, 50% (16 out of 32 cases)
contained >10% outliers from among the total data
points.

The spatial autocorrelation structure of the data sets
was explored by estimating experimental variograms
ðĉðhÞÞ from pooled data sets by insect and greenhouse.
By pooling the data sets over time, data from different
sampling dates were treated as replicates. This process
allowed for more precise estimates of spatial model
parameters, especially for the small-scale components
(Cressie 1993). Thus, experimental variograms could be
fitted to the mathematical restricted variogram models
with a robust and precise estimation of model parame-
ters (Table 2).

Calculated nuggets and sills from each data trans-
formation produced different scales; therefore, the rela-
tive nugget effect (RNE) was calculated in order to
compare each data treatment and mathematical re-
stricted variogram model (Tables 2, 3). The RNE, which
is the ratio of the nuggets (C0) to the sills (C0 + r2), can
be used to evaluate sampling error and fine-scale spatial
effects (Isaaks and Srivastava 1989). In all cases of insect
count data sets, the RNE for the outliers cleaned was
smaller than that when the outliers were included,
regardless of the data transformations. In the thrips
count data sets, the RNE varied from 0.17 to 0.55
(median 0.24) when outliers were cleaned, but varied
from 0.34 to 0.98 (median 0.69) when the outliers were
included in the data sets. Similar differences in the RNE
were observed between whitefly count data sets.

Table 1 Variance-to-mean ratio, zero count samples, and outliers detected at each sampling week from each greenhouse

Greenhouse Data description Sample week

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

TGA VMR 12.9 43.7 12.5 8.0 3.6 46.4
Zero count (%) 6.9 0.0 25.0 27.8 55.6 4.2
Outlier (%) 4.2 11.1 6.9 6.9 12.5 12.5

TGB VMR 16.7 16.3 44.2 53.4 14.7 57.8 39.7 13.8
Zero count (%) 3.6 1.8 0.0 0.0 5.5 0.0 0.0 7.3
Outlier (%) 1.8 1.8 3.6 1.8 7.3 10.9 7.3 16.4

WGA VMR 3.0 3.0 1.4 17.3 2.8 8.7 3.2 7.2 6.6 10.7
Zero count (%) 15.0 42.5 12.5 25.0 32.5 20.0 2.5 0.0 0.0 2.5
Outlier (%) 10.0 22.5 10.0 25.0 10.0 17.5 5.0 5.0 2.5 17.5

WGB VMR 1.4 1.1 1.1 3.9 2.4 8.0 6.7 8.4
Zero count (%) 10.0 32.5 12.5 20.0 10.0 5.0 12.5 7.5
Outlier (%) 15.0 12.5 2.5 15.0 10.0 7.5 7.5 20.0

TGA, TGB, Two commercial cucumber (Cucumis sativus L.) greenhouses in which Frankliniella occidentalis (thrips) populations were
monitored during the growing season of 1996; WGA, WGB, Two commercial cherry tomato (Lycopersicon esculentum) greenhouses
selected for sampling of T. vaporariorum (whitefly) larvae during the growing season of 1998; VMR, variance-to-mean ratio
Numbers of data points in each sample week are 72, 55, 40, and 40 for TGA, TGB, WGA and WGB, respectively
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The differences in the effective ranges from the out-
lier-cleaned data were slightly smaller than those from
the outlier-included data sets; the range varied between
10.56 and 26.40 m (median 17.66 m) and 11.20–29.20 m

(median 16.35 m) in thrips count data sets, respectively,
and from 2.68 to 10.47 m (median 8.52 m) and 2.74 to
15.78 m (median 9.2 m) for whitefly count data sets
(Tables 2, 3).

Table 2 Estimated parameters of three mathematical restricted variogram models with outliers cleaned and included Frankliniella occi-
dentalis count data

Greenhouse Transformation Outlier Model Nugget (C0) Sill (C0 + r2) RNEa Range Q*(h)b

TGA ln(x + 0.5) Cleaned Spherical 0.28 1.12 0.25 24.59 0.503
Exponential 0.25 1.08 0.23 14.83 0.669
Gaussian 0.31 0.94 0.33 12.53 0.510

Included Spherical 1.04 1.29 0.81 21.38 0.972
Exponential 1.07 1.75 0.61 11.29 0.993
Gaussian 1.15 1.42 0.81 16.30 0.921

(x + 0.5)1/4 Cleaned Spherical 0.05 0.29 0.17 26.40 0.024
Exponential 0.09 0.47 0.19 21.96 0.042
Gaussian 0.09 0.25 0.36 13.50 0.086

Included Spherical 0.22 0.32 0.69 28.43 0.892
Exponential 0.20 0.58 0.34 29.20 1.095
Gaussian 0.27 0.28 0.98 14.45 0.753

TGB ln(x + 0.5) Cleaned Spherical 0.29 1.35 0.21 24.62 0.659
Exponential 0.25 1.49 0.17 15.23 0.755
Gaussian 0.30 1.27 0.24 10.56 0.815

Included Spherical 1.15 1.75 0.66 20.00 1.518
Exponential 1.41 1.89 0.75 12.89 1.929
Gaussian 1.63 1.84 0.89 16.35 1.855

(x + 0.5)1/4 Cleaned Spherical 0.15 0.34 0.44 18.00 0.224
Exponential 0.12 0.29 0.41 17.66 0.142
Gaussian 0.18 0.32 0.55 19.34 0.186

Included Spherical 0.25 0.47 0.53 19.17 0.992
Exponential 0.20 0.44 0.45 11.20 0.895
Gaussian 0.27 0.45 0.60 19.73 0.653

aRelative nugget effect = C0/(C0 + r2)
bWeighted sum of square residuals

Table 3 Estimated parameters of three mathematical restricted variogram models with outliers cleaned and included in the Trialeurodes
vaporariorum count data

Greenhouse Transformation Outlier Model Nugget (C0) Sill (C0 + r2) RNE Range Q*(h)

WGA ln(x + 0.5) Cleaned Spherical 0.21 0.64 0.33 8.96 0.080
Exponential 0.21 0.68 0.32 8.52 0.071
Gaussian 0.28 0.67 0.42 8.24 0.075

Included Spherical 0.40 0.58 0.69 8.97 0.210
Exponential 0.49 0.64 0.77 10.47 0.244
Gaussian 0.45 0.66 0.68 8.23 0.237

(x + 0.5)1/4 Cleaned Spherical 0.02 0.05 0.40 8.99 0.049
Exponential 0.03 0.07 0.44 2.68 0.004
Gaussian 0.02 0.08 0.25 4.35 0.096

Included Spherical 0.04 0.06 0.60 8.99 0.147
Exponential 0.04 0.09 0.42 2.74 0.109
Gaussian 0.04 0.07 0.55 10.99 0.125

WGB ln(x + 0.5) Cleaned Spherical 0.16 0.51 0.31 10.47 0.087
Exponential 0.17 0.52 0.33 3.88 0.098
Gaussian 0.27 0.41 0.66 6.53 0.085

Included Spherical 0.21 0.52 0.41 12.22 0.285
Exponential 0.21 0.56 0.38 4.59 0.363
Gaussian 0.35 0.57 0.61 12.62 0.226

(x + 0.5)1/4 Cleaned Spherical 0.01 0.14 0.07 10.17 0.090
Exponential 0.01 0.11 0.10 9.88 0.098
Gaussian 0.03 0.12 0.26 10.23 0.083

Included Spherical 0.07 0.13 0.54 15.78 0.128
Exponential 0.06 0.14 0.43 9.20 0.133
Gaussian 0.09 0.13 0.69 13.66 0.109
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The weighted sum of square residuals ðQ � ðhÞÞ was
selected as a criterion for relevant spatial predictor in the
fit of the theoretical variogram models. Based on the
comparison of the mean Q � ðhÞ within the same insect
species and data transformations, the outlier cleaned
data sets always had lower Q � ðhÞ values than the data
sets containing the outliers (Tables 2, 3), indicating that
all of the variogram models tested in this study were very
sensitive to outliers and that the outlier cleaning process
provided better estimations of theoretical variogram
model parameters from experimental variograms.

Leave-one-out validation

The leave-one-out cross-validation estimation errors are
summarized by RMSE, which ranged from 0.51 to 1.30
in the outlier-included data sets and from 0.11 to 0.97 in
the outlier-cleaned data sets (Table 4). The RMSE in the
outlier-cleaned data sets was always smaller than that of
the outlier-included data sets, suggesting the variogram
models with outliner-cleaned data fit the data better
than those containing outliers.

The relationship between the predicted values and
observed data was investigated using a Pearson’s cor-
relation efficient (r) (Table 4). In all cases, significantly
higher r values at p = 0.05 were achieved from the
outlier-cleaned data sets, regardless of greenhouse and
data transformation. The r values from the outlier-
cleaned data ranged from 0.57 to 0.78 for the thrips

count data sets and from 0.67 to 0.79 for the whitefly
count data sets, respectively. A major factor in these
apparently low correlations in the outlier-included data
sets was the very high nugget effect present in the data;
the estimated RNE from the outlier-included data sets
was always greater than those from the outlier-cleaned
data sets (Tables 2, 3).

Discussion

Geostatistics allows ecologists to organize and summa-
rize data and thus make meaningful inferences about the
dynamics of target organisms in space (Rossi et al. 1992;
Kitanidis 1997; Tilman et al. 1997). Ecologists and ap-
plied entomologists have recently begun to use two
geostatistical techniques for describing the spatial dis-
tribution of insect populations (Schotzko and O’Keeffe
1989; Liebhold et al. 1993; Midgarden et al. 1993; Cho
et al. 2001; Kim et al. 2001; Wright et al. 2002). These
two approaches are the variogram, which is a way to
model spatial dependency, and kriging, which provides
estimates of unrecorded locations (Isaaks and Srivastava
1989; Rossi et al. 1992; Cressie 1993; Kitanidis 1997;
Brandhorst-Hubbard et al. 2001). Both geostatistical
techniques should be evaluated using appropriate
experimental variograms from field spatial data (Olea
2006, 2007).

Unfortunately, skewed population distributions and
outliers in data sets prevent appropriate experimental

Table 4 Root mean square error and correlation coefficient between the original and estimate data by leave-one-out cross validation

Greenhousea Transformation Model Root mean square error Correlation coefficient (r)

Outlier included Outlier cleaned Outlier included Outlier cleaned

TGA ln(x + 0.5) Spherical 1.14 0.94 0.21 0.65*
Exponential 1.15 0.94 0.21 0.61*
Gaussian 1.13 0.97 0.18 0.60*

(x + 0.5)1/4 Spherical 0.48 0.39 0.20 0.67*
Exponential 0.48 0.39 0.24 0.76*
Gaussian 0.51 0.43 0.23 0.78*

TGB ln(x + 0.5) Spherical 0.76 0.40 0.21 0.69*
Exponential 0.77 0.41 0.14 0.57*
Gaussian 0.80 0.42 0.23 0.60*

(x + 0.5)1/4 Spherical 0.52 0.31 0.11 0.65*
Exponential 0.51 0.30 0.34 0.70*
Gaussian 0.50 0.30 0.33 0.71*

WGA ln(x + 0.5) Spherical 1.30 0.79 0.19 0.67*
Exponential 1.30 0.76 0.17 0.68*
Gaussian 1.29 0.79 0.16 0.67*

(x + 0.5)1/4 Spherical 0.78 0.20 0.20 0.77*
Exponential 0.78 0.20 0.22 0.79*
Gaussian 0.79 0.20 0.19 0.76*

WGB ln(x + 0.5) Spherical 0.68 0.42 0.31 0.71*
Exponential 0.57 0.49 0.28 0.77*
Gaussian 0.65 0.41 0.23 0.79*

(x + 0.5)1/4 Spherical 0.57 0.14 0.21 0.77*
Exponential 0.53 0.13 0.21 0.78*
Gaussian 0.61 0.11 0.13 0.77*

* Significant correlation coefficient between outlier-cleaned and -included data set by Fisher’s Z transformation test
aSamples were selected from the 5th sample week at TGA, the 4th sample week at TGB, the 9th sample week at WGA, and the 2nd sample
week at WGB
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variogram models from being developed (Isaaks and
Srivastava 1989; Cressie 1993; Kitanidis 1997). The most
important part of any analysis of any data is the identi-
fication of outliers. When the analysis is concerned with
second moments (such as variances with autocorrelations
or related measures, such as a variogram), outliers can
have a particularly dramatic effect and have long been
recognized as a potential source of serious problems.
Outliers in a data set can make the variogram display
erratic behavior; whereas data transformation can
dampen the difference between extreme values (Grin-
garten and Deutsch 2001). Park et al. (2004) examined
the typical structure of samples from aggregated popu-
lations and found that many samples contained few or no
individuals of a particular species, whereas some samples
contained an extremely high number of individuals. They
also reported that no data transformations in the analysis
of geostatistics could correct the data sets when the zero
counts in the sample data were >20%. In our study, all
data sets were clumped, and nine of the 32 examined
cases contained >20% zero counts. For these data
sets, an outlier cleaning method may help in obtain-
ing appropriate data sets for geostatistical analysis
(Mugglestone et al. 2000; Olea 2006).

Existing work on outliers in spatial processes deals
mainly with variogram estimation and kriging proce-
dures (Nirel et al. 1998). Up to now, a distinction has
not clearly been established between ‘isolated’ and
‘patchy’ outliers arising from purely random and spa-
tially structured patterns of contamination, respectively.
The effects of additive outliers can be dramatic: esti-
mates of auto-covariance function and auto-regressive
moving-average parameters can be severely biased and
inefficient (Guttman and Tiao 1978; Martin and Yohai
1986). In our study, an outlier cleaning method from
Mugglestone et al. (2000), which is a model-based ‘data-
cleaner’, was developed for spatial lattice data. This
approach defines observations that are associated with
spatial regions, where the regions can be regularly (as in
a grid) or irregularly spaced with varying distances be-
tween the region’s centroids (Birkhoff 1967). Our data

set was classified as spatial lattice data because each data
point was separated in a rectangular shape, and species
were sampled at the same spatial location in each
greenhouse. In addition, one data point represented the
population density in the rectangular space of the sam-
pling position in the greenhouse. Outliers were then
detected and cleaned by replacing the outlier value with
the median value of the four closest neighbors (Mug-
glestone et al. 2000). In this case, the outlier cleaning
procedure operated locally rather than systematically,
which is appropriate for small systems, such as the
greenhouse environment. The outlier detection and
cleaning procedures were successful in replacing outliers
in sound manner and showed better performance in the
small-scale greenhouse system.

In this study, the outlier cleaning procedure was
shown to improve geostatistical analysis and reduce the
RNEs of extremely fluctuating and aggregated insect
population data. A higher nugget effect relative to the
sill in the outlier-included data set indicated a poor
spatial continuity (Olea 2006). In addition, a higher
nugget effect makes the prediction values more of a
simple average of the available data. Furthermore, an
increase in the nugget effect indicates a lack of spatial
correlation (Isaaks and Srivastava 1989). Also, several
previous studies have reported that the large nugget ef-
fect is not desirable in terms of prediction variances
(Rossi et al. 1992; Kitanidis 1997). Thus, the outlier
cleaning process developed in this study allows for more
robust model estimation.

The outlier cleaning procedure also enabled hidden
spatial dependence patterns to be identified within the
greenhouse. Masking and swamping effects are very
well-known problems that can arise when detecting
outliers. Masking occurs when an outlier is not detected
because of the presence of other outliers, i.e., an outlier
is being masked by others. Swamping occurs when an
observation is incorrectly identified as an outlier due to
the effect of other outliers (Ben-Gal 2005). For instance,
when a contour map of thrips in TGB at the 7th sam-
pling week was drawn (Fig. 2), two large spatial points

Fig. 2 Contour maps of thrips
larvae distribution including
outliers (a) and not including
outliers (b) in TGB during the
7th sample week. Note that
hidden spatial patches appeared
after the outlier cleaning
procedure was applied
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(i.e., extreme high-density values) were shown to sig-
nificantly affect the whole sampling plot and spatial
dependency (Fig. 2a). However, after applying the out-
lier cleaning procedure, some hidden spatial points ap-
peared (Fig. 2b). Diggle et al. (2010) reported that
unintentional hot spots can mislead geostatistical infer-
ences. In this case, the hidden spatial points were
blocked by two outliers, which would lead to a misin-
terpretation of the spatial dependency. The zone con-
taining the outliers and the other high values should be
separated from the rest and treated separately. Kerry
and Oliver (2007) reported that aggregated outliers had
different effects on the variogram shape from those that
were randomly located and these effects also depended
on whether the outliers were aggregated near to the edge
or to the center of the field. Thus, the outlier cleaning
procedures improve the interpretation of the spatial
dependency through geostatistical analysis by removing
data with extreme values and a large number of zero
values. This study clearly demonstrates that outlier
detection and cleaning procedures are needed before the
spatial dependency of insect population data sets in a
local greenhouse environment can be analyzed.

Insect pest populations vary spatially and temporally
from a field to a larger region scale. As all insect pop-
ulations change over time, temporal aspects should be
also considered. Moreover, spatial and temporal rela-

tionships exist among spatial objects at various scales.
There are several space–time models based upon physi-
cal process and geographical information systems in
wide open areas (Hristopulos and Christakos 2001;
Christakos et al. 2002, 2005), but the detection and
cleaning of temporal outliers or spatio–temporal outliers
have been seldom discussed in ecological studies of in-
sect populations. Future studies should focus on the
effect of the outliers of the spatial and temporal scales
for a better understanding of the population dynamics
and, ultimately, for more efficient pest management
practices.
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Appendix

R language program script for computing M value
(from detail computation method of Mugglestone et al.
2000).
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1‘‘the input data.txt’’ is in the ‘‘data’’ folder of the ‘‘C
drive of your computer’’ as a simple ASCII (text) file,
such as may be exported from a spreadsheet or word
processor, or even created by hand using Windows
Notepad, or in the input panel itself.

This is the structure of the input files:
First, put the m sampling weeks with n records of

your data into a file in the following form:

x coordinate 1<tab>y coordinate 1<tab>sample 1 count 1<tab>sample 2 count 1<tab>.......<tab>sample m count 1 

x coordinate 2<tab>y coordinate 2<tab>sample 1 count 2<tab>sample 2 count 2<tab>.......<tab>sample m count 2 

x coordinate 3<tab>y coordinate 3<tab>sample 1 count 3<tab>sample 2 count 3<tab>.......<tab>sample m count 3 

............. 

x coordinate n<tab>y coordinate n<tab>sample 1 count n<tab>sample 2 count n<tab>.......<tab>sample m count n 
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where the x and y coordinates for each pair (xk, yk;
k ¼ 1; . . . ; n), and the count (ck, k ¼ 1; . . . ; n) at the m th
sampling week ( 1st week; . . . ;mth week), would be read
in, on the same line, as either integers and real numbers.
Each column should be separated by tap.

Note that there are no headers or column titles in the
data file.

2After R reads the data file, they automatically put
internal name as V1; V2; . . . ; Vmþ2 for each column in
data. V1 and V2 always refer ‘x coordinate’ and
‘y coordinate’, respectively. Thus, the count data column
starts from V3.
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