Sorption capacity of plastic debris for hydrophobic organic chemicals

Hwang Leea, Won Joon Shimb, Jung-Hwan Kwona,*

a Division of Environmental Science and Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 136-701, Republic of Korea

b Oil and POPs Research Group, Korea Institute of Ocean Science and Technology, 391 Jangmok-myon, Geoj, 656-834, Republic of Korea

HIGHLIGHTS

• Sorption capacity of microplastic debris was evaluated.
• A third-phase partitioning method was used to determine partition coefficients.
• Partition coefficients between plastics and seawater were determined for HOCs.
• The sorption capacities of three plastics were comparable to that of 1-octanol.
• Marine microplastics may play an important role in the global fate of POPs.

ABSTRACT

The occurrence of microplastics (MPs) in the ocean is an emerging world-wide concern. Due to high sorption capacity of plastics for hydrophobic organic chemicals (HOCs), sorption may play an important role in the transport processes of HOCs. However, sorption capacity of various plastic materials is rarely documented except in the case of those used for environmental sampling purposes. In this study, we measured partition coefficients between MPs and seawater (K_{MPsw}) for 8 polycyclic aromatic hydrocarbons (PAHs), 4 hexachlorocyclohexanes (HCHs) and 2 chlorinated benzenes (CBs). Three surrogate polymers – polyethylene, polypropylene, and polystyrene – were used as model plastic debris because they are the major components of microplastic debris found. Due to the limited solubility of HOCs in seawater and their long equilibration time, a third-phase partitioning method was used for the determination of K_{MPsw}. First, partition coefficients between polydimethylsiloxane (PDMS) and seawater (K_{PDMSsw}) were measured. For the determination of K_{MPsw}, the distribution of HOCs between PDMS or plastics and solvent mixture (methanol:water = 8:2 (v/v)) was determined after apparent equilibrium up to 12 weeks. Plastic debris was prepared in a laboratory by physical crushing; the median longest dimension was 320–440 μm. Partition coefficients between polyethylene and seawater obtained using the third-phase equilibrium method agreed well with experimental partition coefficients between low-density polyethylene and water in the literature. The values of K_{MPsw} were generally in the order of polystyrene, polyethylene, and polypropylene for most of the chemicals tested. The ranges of $\log K_{MPsw}$ were 2.04–7.87, 2.18–7.00, and 2.63–7.52 for polyethylene, polypropylene, and polystyrene, respectively. The partition coefficients of plastic debris can be as high as other frequently used partition
1. Introduction

Plastics are released into the environment via various pathways, and a significant amount of plastic material ultimately reaches the marine environment (e.g., Andrade, 2011; Cole et al., 2011; Derraik, 2002; Moore, 2008; Thompson et al., 2004). Plastic debris undergoes size reduction as a result of physical and chemical processes, such as abrasion by waves and chemical transformation by ultraviolet light. Tiny plastic particles smaller than a few millimeters are often referred to as "microplastics" (Graham and Thompson, 2009). Microplastics floating over water are transported by ocean currents and are found in regions where water circulation is relatively stationary or on seashores (Claessens et al., 2011; Hidalgo-Ruz et al., 2012; Hirai et al., 2011; Martins and Sobral, 2011; Van et al., 2012). A number of heavily produced low density plastics (e.g., polyethylene, polypropylene, and polystyrene) have been identified as the main components of microplastics, and these have various shapes and sizes, ranging from a few micrometers to a few millimeters (Heo et al., 2013; Hidalgo-Ruz et al., 2012; Martins and Sobral, 2011).

Hydrophobic organic chemicals (HOCs) that are persistent and travel long distance tend to sorb to organic phases such as particulate and dissolved organic matter, sediments, and synthetic polymers. Thus, the accumulation of microplastics in the ocean (Browne et al., 2011; Moore, 2008; Thompson et al., 2004, 2009) may affect local or global transport of HOCs in the marine environment (Rios et al., 2007; Teuten et al., 2009). In addition, sorption of HOCs to marine microplastics may affect food-web bioaccumulation and bioavailability of HOCs (Rios et al., 2007). HOCs associated with microplastics may be taken up by aquatic organisms and absorbed in gastrointestinal tracts, similar to uptake processes of sediment-bound HOCs. On the contrary, sorption of HOCs to microplastics may lower the free aqueous concentration and decrease the bioavailability of HOCs. Although it is well known that sorption of HOCs to dissolved organic matter, such as humic acids, lowers the bioaccumulation potential and toxicity of HOCs by reducing bioavailability (e.g., Escher and Hermens, 2002; McCarthy and Jimenez, 1985), the overall contribution of microplastics for bioaccumulation or toxicity of HOCs is unclear. Whereas many studies have been conducted to evaluate sorption/desorption processes of HOCs to various organic phases under laboratory and field conditions (e.g., Cornelissen et al., 2005; Goss, 2011; Karichhoff et al., 1979; Kim and Kwon, 2010), only a few studies have been conducted to assess the effects of sorption of HOCs to microplastics, and for the quantitative evaluation of equilibrium partitioning between microplastics and seawater (Hirai et al., 2011; Teuten et al., 2007; Van et al., 2012). Due to a limited number of partitioning studies, partition or distribution coefficients have been reported for only a few HOCs and plastic phases. Because the equilibrium partition coefficient is one of the most fundamental properties governing the fate of HOCs in the marine environment, it is necessary to understand equilibrium distribution of HOCs between various plastic phases and seawater.

However, there are experimental difficulties relating to the measurement of partition coefficients of HOCs between plastic and seawater, due to low solubility of HOCs and associated problems. The time required for phase-equilibrium in conventional batch equilibrium experiments increases with increasing partition coefficient (Kwon et al., 2007). To circumvent problems with low solubility and long experimental durations, researchers have developed third-phase partitioning methods. For example, partitioning between dissolved organic matter and water has been precisely quantified by measuring partition coefficients between a polymeric phase and water, and between the polymeric phase and a solution containing dissolved organic matter (Kim and Kwon, 2010; Kim et al., 2010; ter Laak et al., 2005).

The primary objective of this research is to obtain reliable partition coefficients for HOCs between microplastics and seawater under laboratory conditions. Polyethylene (PE), polypropylene (PP), and polystyrene (PS) were chosen as model plastic phases for this evaluation, because they are intensively used; they are also the three most frequently found microplastics in the marine environment (Heo et al., 2013; Hidalgo-Ruz et al., 2012; Martins and Sobral, 2011). As model HOCs, 8 polymeric aromatic hydrocarbons (PAHs), 4 hexachlorocyclohexanes (HCHs) and two chlorinated benzenes were chosen. To obtain partition coefficients of the selected HOCs, poly(dimethylsiloxane) (PDMS) was used as a third-phase. Partition coefficients between PDMS and seawater (KPDMSw) were measured for the selected HOCs. To compare relative sorption capacity of PDMS and microplastics, the partitioning of HOCs between PDMS (or microplastics) and the methanol/water solvent mixture was evaluated. Then, partition coefficients between microplastics and seawater were calculated based on the measured values. The partition coefficients were compared to partition coefficients between low-density polyethylene and water (KDPMSw and KPDMSw).

2. Material and methods

2.1. Materials and chemicals

High purity chemical standards were used for all HOCs. Phenanthrene (PHE, 98%), fluoranthene (FLU, 98%), anthracene (ANT, 99%), and pentachlorobenzene (PeCB, 98%) were purchased from Sigma-Aldrich (St. Louis, MO, USA). α-HCH (99.8%), chrysene (CHR, 99.9%), benzo[a]pyrene (BaP, 99.1%), dibenz[a]anthracene (DBahA, 99.9%), and benzol[ghi]perylen (BghiP, 99.6%) were purchased from Supelco (Bellevence, PA, USA). Pyrene (PYR, 99%), β-, γ-, δ-HCH (98.2%), and hexachlorobenzene (HeCB, 99%) were purchased from Fluka (Buch, Switzerland). All partitioning experiments were conducted using mixtures of similar compounds: PAHs mixture 1 (PHE, ANT, FLU, and PYR), PAHs mixture 2 (CHR, BaP, DBahA, and BghiP), HCHs (α-, β-, γ-, and δ-HCHs), and chlorinated benzenes (PeCB and HeCB). Artificial seawater was prepared at 3.5% (w/w) by dissolving artificial sea salt obtained from Sigma-Aldrich. Medical grade PDMS sheets with a thickness of 1 mm and a density of 1.17 g cm⁻³ were purchased from Specialty Silicone Products Inc. (Ballston Spa, NY, USA). For partitioning experiments, the PDMS was cut into disks of diameter 6 mm, cleaned in a Soxhlet extractor using n-hexane and methanol for 2 h each, and stored in methanol until use.

2.2. Preparation of microplastic debris

Microplastic debris was obtained by grating commercial labwares made of PE, PP, and PS using a bastard-cut hand file. The obtained plastic debris was passed through a 250 μm sieve (mesh No. 60, Chunggye Industrial MFG Co., Seoul, Republic of Korea) to screen larger debris. Then, it was washed with n-hexane and methanol for 24 h each, and dried at room temperature until use. The size of the prepared plastic debris was measured using an optical microscope (IX71, Olympus, Japan) equipped with 4× lens (Olympus). The longest dimension was determined visually, using the image taken. In order to compare the visual estimation results to those obtained by dynamic light scattering, the
particle size distribution of polystyrene powder was also measured using LS 13 320 laser diffraction particle size analyzer (Beckman Coulter Inc., Brea, CA, USA). The density of plastics was measured using a volumetric method (ASTM, 2009).

2.3. Determination of partition coefficients between PDMS and seawater (KPDMSsw)

Values of KPDMSsw were measured using the aqueous boundary layer (ABL) permeation method (Kwon et al., 2007) for PAHs and chlorinated benzenes, whereas the batch equilibrium method was used for less hydrophobic HCHs because equilibrium between PDMS and seawater is easily obtained for them and the ABL permeation method is not desirable for chemicals with low partition coefficients (Kwon et al., 2007). The experimental procedure for the ABL permeation method has been extensively described in earlier literature (Kwon et al., 2007; Lee et al., 2012); its theoretical basis is described in the Supplementary Material. In short, a PDMS donor disk (6 mm diameter, 1 mm thickness) was loaded with a mixture of HOCs using methanol:water (6:4, v/v) for 24 h. A clean PDMS acceptor disk of the same size was separated from the donor disk by 6 mm artificial seawater. The aqueous solution between the two disks was agitated using a stainless steel disk (5.08 mm diameter, 0.635 mm thick) at 300 rpm using a VP710F tumble stirrer (V&P Scientific Inc., San Diego, CA, USA). The corresponding thickness of the aqueous boundary layer was estimated at 12.5 μm, as the experimental dimensions in this case were identical to those used in the previous studies (Kwon et al., 2007; Lee et al., 2012). The mass transfer rate constant was obtained by measuring the changes in the concentration of both the donor and the acceptor PDMS disks, and was in turn used to derive KPDMSsw. The donor and acceptor disks were extracted using 1 mL organic solvents for 2 h. n-Hexane was used for the analysis of CBs and acetonitrile was used for the analysis of PAHs. Almost all HOCs were extracted after the first extraction of PDMS disks and less than 5% of HOCs were extracted at the second extraction. The initial concentration in the PDMS donor disks ranged from 90 μmol L−1 (PYR) to 8 mmol L−1 (HeCB). All experiments were conducted at 25 ± 2 °C.

Values of KPDMSsw for HCHs were obtained by measuring the equilibrium concentrations in PDMS and seawater in a batch solution. Four different initial concentrations of HCHs were prepared by dissolving them in artifical seawater. The maximum concentrations of HCHs were 650, 100, 600, and 600 μg L−1 for α-, β-, γ-, and δ-HCH, respectively, sufficiently lower than their aqueous solubilities. After apparent equilibrium between PDMS and seawater was obtained in 36 h, both the aqueous solution and PDMS were extracted using n-hexane and the concentrations in the extracts were quantified using a gas chromatography-electron capture detector (GC-ECD). The extraction recoveries for all HCHs in water were between 90 and 110%.

2.4. Determination of partition coefficients between plastic debris and seawater (KMPsw)

Because direct determination of KMPsw requires very long equilibration time due to high partition coefficients and slow diffusion in plastic phase, KMPsw values were obtained using a third-phase equilibrium method (Kim and Kwon, 2010; Kim et al., 2010; Lee et al., 2012; ter Laak et al., 2005). Fig. 1 describes a schematic diagram of the determination of KMPsw using equilibrium between PDMS and solvent mixture and between microplastic debris and solvent mixture. A methanol:water (8:2 v/v) mixture was used as the solvent mixture, because methanol does not result in significant swelling of PDMS (Lee et al., 2003) and sample plastics. Furthermore, plastic materials sink by gravity in the solution, because the solution density is approx. 0.85 g cm−3. KMPsw can be calculated using partitioning ratios as follows:

\[
K_{\text{MPsw}} = K_{\text{MPsm}} \frac{K_{\text{PDMSsm}}}{K_{\text{PDMSsw}}}
\]

where \(K_{\text{MPsm}}\) and \(K_{\text{PDMSsm}}\) are partition coefficients between MP and solvent mixture and between PDMS and solvent mixture, respectively. Each vial containing PDMS (or plastics) and solvent mixture was agitated at 25 °C and 150 rpm using a shaking incubator in the dark. The mass of the 6-mm PDMS disk was 39 mg and that of microplastics was approximately 10 mg in a 4 mL solvent mixture. Under this condition, the initial concentration of HOCs in the solvent mixture did not change significantly by sorption to PDMS or microplastics. PDMS disks were taken out after the designated number of hours, and extracted using either acetonitrile for HPLC analyses or n-hexane for GC analyses as described above. After the designated number of days, solvent mixture was filtered through a glass filter (0.45 μm) to separate microplastics. Filtered microplastics were washed by flowing 1 mL of distilled water through the glass filter two times to remove residual solvent on the surfaces of plastics. The mass of air dried microplastics was measured and the HOCs sorbed to plastics were extracted using

![Fig. 1. Schematic diagram of the determination of microplastic-seawater partition coefficients using a third-phase partitioning method.](image-url)
n-hexane for 1 day. n-Hexane extracts were then subjected to GC analyses for CBs and HCHs. For PAHs, n-hexane was exchanged by acetone-trile for HPLC analyses. Because preliminary sequential extraction showed that almost all extractable HOCs (>95%) were extracted from microplastics at the first extraction, the chemical concentration in microplastics was measured using the first extraction.

2.5. Instrumental analyses

For chemical analyses of HOCs, chlorinated benzenes (CBs) and HCHs were quantified using a GC-ECD, and PAHs were analyzed using an HPLC-fluorescence detector. One microliter of the extracted samples containing CBs or HCHs was injected into a GC system equipped with a Hewlett-Packard 5890 Series II gas chromatograph, an electronic pressure control (EPC), a split/splitless capillary inlet, and an ECD. One microliter of n-hexane solution was injected at the split ratio of 10:1. Mixtures of chlorinated benzenes and HCHs were separated on an HP-5 column (30 m × 0.25 mm i.d., 0.25 μm film thickness, Agilent J&W Scientific, Folsom, CA). The column oven temperature was held at 120 °C for 3 min, followed by an increase to 200 °C at 5 °C min⁻¹, held for 5 min, an increased to 280 °C at 45 °C min⁻¹, and held for 1 min. The injector and the ECD temperature were 200 and 320 °C, respectively.

The concentration of PAHs was quantified using an HPLC system equipped with a Waters 600E pump (Milford, MA, USA), an autosampler (Waters 717+) and a fluorescence detector (Waters 2475). Mixtures of PAHs were separated on a Fortis C18 column (4.6 × 150 mm, 5 μm particle size; Fortis Technologies Ltd., Neston, UK) in isocratic mode, using deionized water:methanol (6:4 or 8:2 v/v). The total flow rate of eluent was 1 mL/min. The excitation and emission wavelengths were 260 and 420 nm for PAH mixture 1 (PHE, ANT, FLU, and BghiP). Values of 260 and 450 nm for PAH mixture 2 (CHR, BaP, DBahA, and BghiP).

3. Results and discussion

3.1. Physical characterization of microplastics

Fig. 2 shows microscopic images of laboratory prepared microplastics for (a) polyethylene (PE), (b) polypropylene (PP), and (c) polystyrene (PS). As shown, the shape of microplastics was fragment-type and the median (25 and 75 percentile) sizes of the longest dimension were estimated 420 (310, 540), 440 (340, 550), 320 (250, 420) μm for PE, PP, and PS, respectively. The median diameter of PS measured by laser diffraction was 306 μm, close to the median value obtained by microscopic analysis. The experimental densities (± standard error) of the three microplastics were 0.963 (± 0.016), 0.920 (± 0.013), and 1.090 (± 0.006) g·cm⁻³ for PE, PP, and PS, respectively. Because high-density polyethylene (HDPE) has density above 0.94 g·cm⁻³ (Baker and Mead, 2000), the PE material used in this study can be classified as HDPE with high crystallinity. The measured densities of three plastics are at the high ends of the range of reported densities (Table S1, Supplementary Material).

3.2. Determination of KPDMS

Equilibrium partition coefficients of HCHs between PDMS and seawater were determined from the slopes of the equilibrium concentration in PDMS (CPDMS) compared to that in artificial seawater (Fig. S1, Supplementary Material). As shown in Fig. S1, narrow 95% confidence intervals for the slopes were obtained. Determination of kinetic rate constants for the ABL permeation method is shown in Fig. S2, Supplementary Material. All measured values of log KPDMS are listed in Table 1. Because partition coefficients between PDMS and deionized water (KPDMSw) for the selected HOCs have already been measured in earlier studies (Brown et al., 2001; Kwon et al., 2007; Leslie et al., 2002; Maruya et al., 2009; Mayer et al., 2000; Ouyang et al., 2008; Paschke and Popp, 2003; Poerschmann et al., 2000; Potter and Pawliszyn, 1994; Ramos et al., 1998; Shurmer and Pawliszyn, 2000; ter Laak et al., 2005; Valor et al., 2001; Witt et al., 2009; You et al., 2007; detailed values are presented in Table S2, Supplementary Material), the measured values of KPDMS in this study were compared with KPDMSw in the literature (Fig. S3, Supplementary Material). Values of log KPDMS reported in this study agreed well with median log KPDMSw values reported in literature except for β- and δ-HCHs. While log KPDMS values of 2.59 (Paschke and Popp, 2003) and 2.66 (Valor et al., 2001) were reported for β-HCH, log KPDMSw obtained in this study (1.81) was approximately one order of magnitude lower than those values. For δ-HCH, log KPDMSw in this study (2.17) agreed well with 2.03 obtained by Paschke and Popp (2003), but deviated much from 3.30 by Valor et al. (2001). Values of log KPDMS in this study were very close to the median literature values especially for less hydrophobic PAHs, chlorinated benzenes and α- and γ-HCHs. However, the measured log KPDMS values for more hydrophobic PAHs (i.e., BaP, DBahA, and BghiP) were slightly greater than median values of log KPDMSw. Because the theoretical difference between log KPDMS and log KPDMSw should be about 0.05–0.2 with Setschenow constant of 0.1–0.4 L mol⁻¹ (Endo et al., 2012), it was difficult to evaluate “salting-out” effects in this study due to the wide range of log KPDMS values in the literature.

3.3. Determination of partition coefficients between plastic debris and seawater

Preliminary experiments showed that a very long time is required to attain phase equilibrium between plastic debris and seawater for the selected HOCs. Thus, in order to minimize experimental duration and any potential artifacts with this, concentration ratios (CPDMS/Csw for PDMS and solvent mixture and CMP/Csw for MP and solvent mixture) were separately measured to derive KMP/KPDMSw (Fig. 1). Fig. 3 shows changes (a) in CPDMS/Csw and (b) in CPEDM/Csw with increasing shaking time for PAHs mixture 1 using polyethylene as examples. All other kinetic results are shown in Fig. S4–S7, Supplementary Material. As
shown in Figs. 3a and S4, the values of CPDMS/Csm for all HOCs remained unchanged after 6 h. On the contrary, values of CPEM/Csm approached steady values after ca. 30 days for PAHs mixture 1 (Figs. 3b, S6a, and S7a). For HCHs, similar trends were observed (Fig. S5–S7). However, slightly increasing trends were observed up to 90 days for PAHs mixture 2 and CBs (Fig. S5). Because values of CPDMS/Csm are not very high and the size of plastic debris is smaller than that of PDMS, the long equilibration time is likely due to slow diffusion of HOCs into plastic phase. Last four data points were used to derive the equilibrium ratios of KPMP and KPDMS, although KMP is more hydrophobic PAHs and CBs might underestimate equilibrium values.

Table 1

Values of log KPDMSsw, log KPEsw, log KPPsw, and log KPSsw for the selected HOCs with their log Kow values.

<table>
<thead>
<tr>
<th>Chemical</th>
<th>log Kow</th>
<th>log KPDMSsw (KPDMSsw in Lsw/LPDMS)</th>
<th>log KPEsw (KPEsw in Lsw/kgPE)</th>
<th>log KPPsw (KPPsw in Lsw/kgPP)</th>
<th>log KPSsw (KPSsw in Lsw/kgPS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAHs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHE</td>
<td>4.52</td>
<td>3.87 (3.76, 3.95)</td>
<td>4.44 (4.33, 4.54)</td>
<td>4.00 (3.88, 4.11)</td>
<td>5.39 (5.27, 5.49)</td>
</tr>
<tr>
<td>FLU</td>
<td>5.20</td>
<td>4.37 (4.27, 4.45)</td>
<td>5.52 (5.41, 5.62)</td>
<td>4.79 (4.67, 4.90)</td>
<td>5.91 (5.76, 6.01)</td>
</tr>
<tr>
<td>ANT</td>
<td>4.59</td>
<td>4.04 (3.94, 4.12)</td>
<td>4.77 (4.67, 4.87)</td>
<td>4.39 (4.18, 4.38)</td>
<td>5.61 (5.51, 5.70)</td>
</tr>
<tr>
<td>PYR</td>
<td>5.00</td>
<td>4.37 (4.27, 4.45)</td>
<td>5.57 (5.45, 5.67)</td>
<td>4.88 (4.68, 4.90)</td>
<td>5.84 (5.71, 5.96)</td>
</tr>
<tr>
<td>CHR</td>
<td>5.86</td>
<td>4.83 (4.73, 4.92)</td>
<td>6.39 (6.27, 6.50)</td>
<td>5.51 (5.40, 5.61)</td>
<td>6.63 (6.52, 6.72)</td>
</tr>
<tr>
<td>BaP</td>
<td>6.35</td>
<td>5.29 (5.17, 5.38)</td>
<td>7.17 (7.03, 7.30)</td>
<td>6.10 (5.97, 6.20)</td>
<td>6.92 (6.80, 7.02)</td>
</tr>
<tr>
<td>DBahA</td>
<td>6.75</td>
<td>5.84 (5.74, 5.92)</td>
<td>7.87 (7.72, 8.00)</td>
<td>7.00 (6.89, 7.10)</td>
<td>7.52 (7.41, 7.61)</td>
</tr>
<tr>
<td>BghiP</td>
<td>6.90</td>
<td>5.79 (5.68, 5.87)</td>
<td>7.76 (7.64, 7.75)</td>
<td>6.69 (6.56, 6.81)</td>
<td>7.15 (7.03, 7.24)</td>
</tr>
<tr>
<td>HCHs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α-HCH</td>
<td>3.80</td>
<td>2.77 (2.74, 2.80)</td>
<td>2.41 (2.36, 2.46)</td>
<td>2.69 (2.64, 2.75)</td>
<td>3.19 (3.15, 3.23)</td>
</tr>
<tr>
<td>β-HCH</td>
<td>3.81</td>
<td>1.81 (1.77, 1.84)</td>
<td>2.04 (1.99, 2.09)</td>
<td>2.18 (2.08, 2.28)</td>
<td>2.63 (2.59, 2.67)</td>
</tr>
<tr>
<td>γ-HCH</td>
<td>3.55</td>
<td>2.62 (2.58, 2.65)</td>
<td>2.33 (2.28, 2.38)</td>
<td>2.58 (2.52, 2.64)</td>
<td>3.01 (2.97, 3.05)</td>
</tr>
<tr>
<td>δ-HCH</td>
<td>4.14</td>
<td>2.17 (2.13, 2.20)</td>
<td>2.08 (2.03, 2.12)</td>
<td>2.23 (2.13, 2.34)</td>
<td>2.80 (2.75, 2.85)</td>
</tr>
<tr>
<td>CBs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PeCB</td>
<td>5.17</td>
<td>4.51 (4.40, 4.60)</td>
<td>4.63 (4.49, 4.75)</td>
<td>4.50 (4.39, 4.59)</td>
<td>5.10 (4.99, 5.20)</td>
</tr>
<tr>
<td>HecB</td>
<td>5.31</td>
<td>4.90 (4.79, 4.99)</td>
<td>5.22 (5.08, 5.34)</td>
<td>5.01 (4.89, 5.10)</td>
<td>5.28 (5.17, 5.38)</td>
</tr>
</tbody>
</table>

Values in parentheses are the lower and the upper 95% confidence limits. Confidence limits for partition coefficients obtained using ABL permeation method and the third-phase partitioning method were calculated using error propagation.

a Suggested value by Sangster Research Laboratory.

b Values might be underestimated due to limited equilibration time.

Partition coefficients obtained in this study for three polymers were compared with reported values of partition coefficients obtained for LDPE used as passive sampling material (Fig. 4). Although polyethylene used in this study has relatively higher density than typical LDPE (Table S1), the measured values agreed well with literature values of partition coefficients between LDPE and water (Adams et al., 2007; Bao et al., 2012; Booij et al., 2003; Cornelissen et al., 2008; Fernandez et al., 2012; Booij et al., 2003; Cornelissen et al., 2008; Fernandez et al., 2012).
et al., 2009; Hale et al., 2010; Huckins et al., 1993; Müller et al., 2001; Smedes et al., 2009).

Although sorption capacity of three different plastic materials varied within approximately an order of magnitude, their partition coefficients (K_{PEw}, K_{PPw}, and K_{PSw}) for PAHs and CBs are close to K_{ow} within an order of magnitude (Fig. 5). However, $log K_{MPsw}$ values for HCHs are much smaller than their $log K_{ow}$ values. Because HCHs have relatively high polarity (Goss et al., 2008) and three plastics are non-polar, the relatively smaller $log K_{MPsw}$ compared with $log K_{ow}$ for them may be explained by the absence of polar interactions that are important with 1-octanol.

Relatively high sorption capacity of microplastics for HOCs implies potential roles of microplastic debris in the marine environment. Sorption of HOCs to microplastics might lower the dissolved concentration and thus reduce bioavailability where sufficient quantity of microplastic exists such as ocean garbage patches. High sorption capacity of microplastics to HOCs would also affect the intermedia transport mechanisms such as evaporation of HOCs from water compartments, enhanced transport of HOCs when desorption is readily available, and plastic-bound uptake of HOCs by fish although it is required for further studies to elucidate the effects of microplastics on these processes. In addition, quantitative partition coefficients will be helpful when monitoring the global distribution of POPs using microplastics used as wide spread passive samplers.

Fig. 4. Relationships between $log K_{MPsw}$ and $log K_{LDPEw}$ for (a) polyethylene (PE), (b) polypropylene (PP), and (c) polystyrene. Median values of literature $log K_{LDPEw}$ were used when multiple values are available. Filled circles indicate K_{MPsw} values that might be underestimated due to limited equilibration time. Horizontal error bars denote the entire range of literature $log K_{LDPEw}$ values. Dashed lines indicate 1:1 relations.

Fig. 5. Relationships between $log K_{MPsw}$ and $log K_{ow}$ for (a) polyethylene (PE), (b) polypropylene (PP), and (c) polystyrene (PS). Filled circles and diamonds indicate K_{MPsw} values that might be underestimated due to limited equilibration time. Dashed lines and solid lines indicate 1:1 relations and best-fit linear equations.
4. Conclusions

The values of K_{MPSW} obtained using a third-phase partitioning method showed that common plastic materials hold high sorption capacities to HOCs comparable to those of 1-octanol or LDPE used for passive sampling purposes. Since microplastics are widespread in the marine environment and undergo slow degradation, they may play an important role in the fate and transport of HOCs in the marine environment. Because equilibrium partitioning is the most fundamental process governing other kinetic processes, K_{MPSW} obtained in this study would be useful in the evaluation of particle-bound transport processes determining bioavailability and bioaccumulation of HOCs.

Acknowledgment

The Authors thank Dr. Ju-Min Kim for his help in visual analysis of microplastic debris. This research was a part of the project titled “A study on microplastic pollution in the coastal environment (PE99153)” funded by Korea Institute of Ocean Science and Technology.

Appendix A. Supplementary material

Supplementary material to this article can be found online at http://dx.doi.org/10.1016/j.scitotenv.2013.08.023.

References

ASTM. Standard test method for density of solid pitch (heather pyrometer method); 2009 (D4892–09).
Pignatello JJ, Xing B. Mechanisms of slow sorption of organic chemicals to natural partici-

Ramos EU, Meijer SN, Vaes WHJ, Verhaar HJM, Hermes JM. Using solid-phase microextraction to determine partition coefficients to humic acids and bioavail-

