
Available online at http://link.springer.comOcean Sci. J. (2017) 52(1):4355
http://dx.doi.org/10.1007/s12601-017-0004-9

pISSN 1738-5261
eISSN 2005-7172

Article

Fugacity Analysis of Polycyclic Aromatic Hydrocarbons between 
Microplastics and Seawater

Hwang Lee1, Sein Chang1, Seung-Kyu Kim2, and Jung-Hwan Kwon1*
1Division of Environmental Science and Ecological Engineering, College of Life Sciences and Biotechnology, Korea University, 
Seoul 02841, Korea
2Department of Marine Science and Research Institute of Basic Sciences, College of Natural Science, Incheon National University, 
Incheon 22012, Korea

Received 13 July 2016; Revised 7 November 2016; Accepted 8 November 2016
 KSO, KIOST and Springer 2017

Abstract  Recently, the accumulation of plastic debris in the
marine environment has become a great concern worldwide.
Although plastics are biologically and chemically inert, plastic
debris has been suspected of causing adverse effects on ecosystems
due to the increase in reactivity by size reduction and/or micropollutants
associated with plastics. Because of the high sorption capacity of
microplastics toward organic micropollutants, it is suspected that
microplastics may play roles in the distribution and fate of
micropollutants. In order to quantitatively evaluate the “net flow”
of environmental contaminants in water-plastic-organism systems,
a fugacity analysis was conducted using concentrations of polycyclic
aromatic hydrocarbons (PAHs) in open oceans and in polyethylene
as a representative material of plastic debris. Ratio of fugacity in
polyethylene to that in seawater showed a decreasing trend with
increasing partition coefficient between polyethylene and seawater
(KPE/sw). This indicates that phase equilibrium between polyethylene
and seawater is not attained for higher molecular weight PAHs.
Disequilibrium of high molecular weight PAHs suggests that transfer
from seawater to plastic debris is thermodynamically driven and
the role of plastic debris as a vector to transfer them to living organisms
would be minimal. However, additives may slowly migrate from
plastics into the environment causing potentially serious effects on
ecosystems.

Key words  microplastics, polycyclic aromatic hydrocarbons
(PAHs), bioaccumulation, fate, fugacity, partitioning

1. Introduction

In recent decades, the accumulation of plastic debris in the
marine environment has raised significant concerns (Moore

et al. 2001, 2008; Thompson et al. 2004; Barnes et al. 2009;
Ivar do Sul and Costa 2014). Although plastics are regarded
as being inert, potentially harmful effects on marine ecosystems
are suspected to be caused by the increased reactivity of
smaller broken-down plastic particles (Bhattacharya et al.
2010; von Moos et al. 2012; Lee et al. 2013) and/or the chemical
contaminants associated with plastic debris (Teuten et al.
2009).

Major plastic materials identified in monitoring studies
have been polyethylene, polypropylene, and polystyrene
(Hidalgo-Ruz et al. 2012). They are plastic materials that
have been produced in large quantities over the past 50 years
(Andrady and Neal 2009). These plastic materials may contain
additives intentionally incorporated to enhance the desired
engineering properties, or contain environmental contaminants,
such as persistent organic pollutants (POPs), due to the high
sorption capacity of plastic materials. Because of the high
partition or distribution coefficient between plastic and water,
the concentration of many hazardous chemicals was found
to be higher than that in water (Lee et al. 2014; Velzeboer et
al. 2014). This aspect raised concerns that plastics may
deliver hazardous chemical substances from water to living
organisms (Teuten et al. 2009). In other words, the existence
of small plastic debris may be considered to accelerate the
rate of transport of hydrophobic organic chemicals to living
organisms. For example, Bakir et al. (2014) showed that the
rate of desorption of hydrophobic organic contaminants such
as phenanthrene, DDT, and diethylhexyl phthalate under
simulated gut conditions was enhanced, and suggested that
enhanced mass transport may contribute to the role of*Corresponding author. E-mail: junghwankwon@korea.ac.kr



44 Lee, H. et al.

ingested plastic particles as a “vector” for hydrophobic organic
chemicals.

However, higher concentrations of hydrophobic organic
chemicals (HOCs) in plastic phase than those in water do not
necessarily mean that micro- or nano-sized plastic particles
contribute to bioaccumulation of HOCs through the food
chain. Biomagnification occurs when the fugacity of a chemical
of a predator is maintained at a greater level than that of the
prey and the environment, because HOCs are absorbed but
not utilized in the body, whereas the organic matter of prey is
used for new cells or for energy production (Gobas et al. 1999).
Because plastics are not digested and not absorbed through
the intestinal tract, the transfer process of HOCs from the
ingested plastic particles to the body is different from HOCs
contained in prey. In addition, the concentration of plastic
particles in the marine environment may not be sufficiently
high to contribute to the overall intake rate of HOCs compared
with other processes, such as absorption through the gills
and via food (Gouin et al. 2011).

Fugacity represents the “escaping tendency” of a chemical
from its confined phase (Mackay 2001) normally described
in the unit of pressure. Chemicals in a phase with higher fugacity
flow to another phase with lower fugacity to attain phase
equilibrium. Thus, analyzing the fugacity of the chemical in
different environmental media should be useful in estimating the
direction of net chemical flow from one phase to another
(Lohmann et al. 2009; Ma et al. 2013). In these studies, the
fugacity ratio between water and air was used to evaluate the
direction of the global transport of HOCs.

In this study, a fugacity analysis was performed for eight
polycyclic aromatic hydrocarbons (PAHs) as examples of
HOCs that are not intentionally added to plastics, to evaluate
the direction of net flow of PAHs in the marine environment.
Polyethylene (PE) was chosen as the model plastic phase
because partitioning of PAHs between PE and seawater has
been intensively studied. Monitoring data for PAHs in
plastic debris were obtained from the literature and they
were converted to fugacity using partition coefficients.
Fugacity in seawater was estimated from literature values
reported in the open oceans that were not likely to be
affected by point or non-point sources nearby. The fugacity
ratio of the two phases was then computed and differences in
fugacity ratio for PAHs with different hydrophobicity were
compared in order to judge the degree of equilibration and
the net direction of the chemical flow driven by thermodynamic
partitioning.

2. Data Collection and Fugacity Analysis

Model plastic phase and pollutants
Polyethylene was chosen as a surrogate plastic material

because it is the most widely used plastic material (Plastics
Europe 2015) and most abundantly identified in marine debris
(Hidalgo-Ruz et al. 2012). In addition, partitioning properties
of PAHs between polyethylene and water are well-documented
in the literature (Huckins et al. 1993; Müller et al. 2001;
Booij et al. 2003; Adams et al. 2007; Cornelissen et al. 2008;
Fernandez et al. 2009; Perron et al. 2009; Smedes et al. 2009;
Hale et al. 2010; Bao et al. 2012; Fries et al. 2012; Lee et al.
2014). PAHs were chosen as model environmental pollutants
because physico-chemical properties such as Henry’s law
constant, partition coefficients, required for the calculation of
fugacity, are well-documented in the literature and monitoring
data in seawaters and for polyethylene are available as individual
chemicals. Thus, eight PAHs (phenanthrene (PHE), fluoranthene
(FLU), anthracene (ANT), pyrene (PYR), chrysene (CHR),
benzo[a]pyrene (BaP), dibenz[a,h]anthracene (DBahA),
benzo[ghi]perylene (BghiP)) were chosen. The range of
hydrophobicity and molecular size of the selected PAHs
almost covers that of 16 priority PAHs by US EPA. The logarithm
of the partition coefficient between PE and seawater (log KPE/sw)
ranged from 4.44 (for PHE) to > 7.87 (for DBahA) (Lee et al.
2014). 

Data collection
Reported values of the concentration of the selected PAHs

in polyethylene debris collected in the field were obtained
from publications filed in SCOPUS between January 2000
and March 2015. The combinations of keywords used in
the screening are listed in Table 1. Because researchers use
different terminology, the individual names of PAHs or
“polycyclic aromatic hydrocarbons” were combined with
“microplastics”, “debris”, “resin pellets”, “pellets”, or
“polyethylene”. Ideally, seawater concentrations of PAHs

Table 1. Keywords used for searching publication from SCOPUS

Medium Keyword

Microplastics

“microplastics”
“resin pellet”
“debris” and individual names of PAHs
“pellet” and individual names of PAHs
“polyethylene” and individual names of PAHs

Seawater
“seawater” and individual names of PAHs
“seawater” and “polycyclic aromatic hydrocarbons”
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should be used for water samples collected at the same sites
where plastic debris was collected. However, to the best of
our knowledge, no published paper has reported concentrations
of individual PAHs in both phases at the same sampling
sites.

Of the 14 references that reported concentrations of PAHs
in polyethylene or plastic pellets collected in seawater, or on
beaches, five publications (Frias et al. 2010; Hirai et al. 2011;
Karapanagioti et al. 2010, 2011; Mizukawa et al. 2013)
indicated that PAH concentration was measured in polyethylene
pellets or fragments. Because all data from Karapanagioti
et al. (2010) are also included in their later publication
(Karapanagioti et al. 2011), data from Karapanagioti et al.
(2011) were used in the following analysis. Seven publications
reported only the total concentration of PAHs in the plastic
phase. Two other publications reported the concentration of
individual PAHs chosen in isolated pellets, without the
identification of plastic type (Fisner et al. 2013a, 2013b).
However, the concentration of PAHs from those two studies
was also included in the analysis because most of plastic
pellets isolated were polyethylene or polypropylene (Rios et al.
2007, 2010; Hidalgo-Ruz et al. 2012).

Table 3 summarizes median, 25, and 75 percentile values
of measured concentrations of eight selected PAHs in plastic
pellets or fragments, information about the sample collection
sites and the sample size. A blank field appears when the
concentration was not measured. Sample collection sites include
open oceans (Hirai et al. 2011) and beaches (Karapanagioti
et al. 2010, 2011; Frias et al. 2011; Hirai et al. 2011; Fisner et al.
2013a, 2013b). Because there were many values of PAH
concentration in isolated plastic particles below the detection
limit, the calculated median and 25 percentile values were
represented as n.d. for certain PAHs. For all studies, the
reported concentration of PAH was obtained by pooling

isolated plastic particles to minimize piece-to-piece variation.
Because the mass of pooled plastic particles for chemical
analysis was different among those studies, the same weight
was given to the median values from single articles for fugacity
analysis.

It is thought that plastic fragments and pellets remain for a
long time in open seawater due to regional/global circulation
systems based on their abrasion and weathering status
(Browne et al. 2007; Barnes et al. 2009). Thus, the fugacity
of PAHs in plastic debris should be compared with that of
PAHs in seawater samples that represent the global baseline
level of PAHs. Keyword combinations of “seawater” and the
name of individual PAHs or “polycyclic aromatic hydrocarbons”
yielded more than 600 publications. Among them, nine
references (Nizzetto et al. 2008; Fuoco et al. 2009; Lohmann
et al. 2009, 2013; Berrojalbiz et al. 2011; Wu et al. 2011;
Chizhova et al. 2013; Ma et al. 2013; Monteyne et al. 2013 )
were selected to give representative levels of PAH in open
oceans after excluding monitoring values near oil spill sites
or places where the levels were likely to be affected by point
and nonpoint sources of PAHs including harbors, ports,
coastal areas, and lagoons.

In Table 4, sample size, sampling location, and reported
values of concentrations in seawaters are summarized. Median,
25 and 75 percentile values were calculated as mentioned
above for PAH concentration in plastic particles. Chizhova
et al. (2013) reported only maximum, minimum and mean
concentrations for seven PAHs (FLU, ANT, PYR, CHR,
BaP, DBahA, and BghiP) in the East Sea (Sea of Japan),
without reporting raw data for each concentration. Thus,
mean values were taken instead of median values for the
following analysis. Monteyne et al. (2013) provided
concentrations of eight selected PAHs from the North Sea.
Values obtained from the sample collected 8 km away from

Table 2. Polyethylene/water partition coefficients and the Henry’s law constants used for the calculation of fugacity

PAHs log H (H in L atm mol1) log KPE/sw (KPE/sw in L kg1)a

Phenanthrene (PHE) 2.64b 4.44
Fluoranthene (FLU) 2.88b 5.52
Anthracene (ANT) 2.52b 4.77
Pyrene (PYR) 3.01b 5.57
Chrysene (CHR) 3.64b 6.39
Benzo[a]pyrene (BaP) 4.01b 7.17c

Dibenzo[a,h]anthracene (DBahA) 5.51d 7.87c

Benzo[ghi]perylene (BghiP) 4.96e 7.61c

aValues taken from Lee et al. (2014) using third-phase partitioning method, bfrom Lee et al. (2012), cindicates partition coefficients that might be
underestimated because of incomplete equilibrium, dfrom Odabasi et al. (2006), efrom ten Hulscher et al. (1992)
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the coastline of Belgium were taken. All other values along
the coastline were excluded in the analysis. In Nizzetto et al.
(2008) a few values that were reported as “not quantifiable”
were excluded in the calculation of median values. As was
the case with the PAH concentration in plastic particles,
median values from single references had the same weight
in the following fugacity analysis.

Calculation of fugacity from reported concentrations
The fugacity of PAHs in seawater (fsw, atm) was calculated

by multiplying the seawater concentration (Csw, mol/L) with
the Henry’s law constant (H, L atm/mol):

fsw = Csw H (1)

Fugacity of PAHs in polyethylene (fPE) was calculated by
equation (2).

fPE = CPE H / KPE/sw (2)

where CPE represents PAH concentration in polyethylene or
plastic debris (mol/kg) and KPE/sw represents the partition
coefficient between polyethylene and seawater (L/kg). The
salting-out effect on the Henry’s law constant was neglected
because salt concentration in seawater was shown not to
have a very significant effect (Endo et al. 2012; Lee et al.
2014). In addition, the effects of the Henry’s law constant
were cancelled because fugacity ratio (fPE/fsw) was used in
the following analysis.

In the case where the plastic phase was not identified
(Fisner et al. 2013a, 2013b), fugacity of PAH in plastic debris
was calculated by partition coefficients between polyethylene
and seawater (KPE/sw) because PE has higher production
volume than PP. 

3. Results and Discussion

PAHs in plastic debris
In general, higher concentrations of PAH were monitored

near Santos Bay (Fisner et al. 2013a, 2013b) (Table 3). This
would be likely due to potential sources of PAHs in Santos
Bay located near Santos harbor and Cubatão industrial
complex which is a center for the petrochemical and metal
industry of Brazil. Hirai et al. (2011) used PE pellets collected
from many places across the world, including open ocean
and beaches. For other studies, PE pellets were mostly
isolated on beaches and their median values reported were
mostly within one order of magnitude (Frias et al. 2010;

Hirai et al. 2011; Karapanagioti et al. 2011; Mizukawa et al.
2013). 

PAHs in open oceans
As shown in Table 4, it is not surprising that the reported

concentration of PAHs in seawaters has a much larger
variation than that in plastic debris, because seawater samples
are likely to be more affected by local sources of PAHs. Median
values of the selected PAHs in open oceans have varied
within approximately three orders of magnitude. It is difficult
to choose one representative baseline value in open oceans
for individual PAHs, because reported values from selected
publications represent concentrations in diverse sites and
sampling dates. For example, the median values for PYR
were reported in all the selected references and ranged from
9.5 × 10-10 to 1.3 × 10-6 mg/L. Concentrations of PAHs tend
to be higher in seawater samples collected closer to major
industrialized areas (Wu et al. 2011; Chizhova et al. 2013;
Monteyne et al. 2013) than in remote oceans (Lohmann et al.
2009; Ma et al. 2013; Nizzetto et al. 2013), implying the
potential influences of industrial activities. The PHE/ANT
ratio in seawater samples of the selected studies ranged from
7.4 to 84. Because crude oils are characterized by a high
PHE/ANT ratio (Neff et al. 2000, 2005), the seawater samples
were not likely to have been affected by the direct influence
of crude oil spill events.

Thus, median values of the concentration of PAHs in
seawater from each reference were used for the calculation
of the fugacity ratio, whereas the median of the median values
of the concentration in plastic debris from each reference
were used.

Fugacity analysis
Figure 1 compares calculated fugacities of PAHs in

polyethylene (fPE) and those in seawater (fsw) from each
literature. Values of fugacities are summarized in Table A1,
Appendix. The fugacity calculated by Lohmann et al. (2009)
using seawater concentrations (Fig. 1d) for PHE, ANT,
FLU, and PYR and by Ma et al. (2013) (Fig. 1f) for all selected
PAHs, were consistently higher than values obtained using
seawater concentrations in other publications. As mentioned
above, the seawater samples studied by Lohmann et al. (2009)
and Ma et al. (2013) included Arctic waters that might be
less affected by any anthropogenic sources of PAHs, such as
river outflow, ship ballast water, and other potential point
sources. Because values of individual PAH concentration
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were not collected at the same sites, it is not desirable to
compare calculated fugacities directly. However, a clear
tendency revealing that fugacity ratio decreases with increasing

log KPE/sw in most studies evaluated provides a meaningful
insight (Fig. 2). Diffusion coefficients of PAHs decrease
with increasing molecular weight and partition coefficient

Fig. 1. Comparison between the logarithm fugacity of PAHs in polyethylene debris (log fPE) and that in seawater (log fsw). Median
fugacity of each PAH in PE was used, whereas median fugacity values of PAHs in seawater were taken from (a) Berrojakbiz et
al. (2011), (b) Chizhova et al. (2013), (c) Fuoco et al. (2009), (d) Lohmann et al. (2009), (e) Lohmann et al. (2013), (f) Ma et al.
(2013), (g) Monteyne et al. (2013), (h) Nizzetto et al. (2008), and (i) Wu et al. (2011). Solid lines represent 1:1 relationship (i.e.,
phase equilibrium) and dashed lines represent 10:1 and 1:10 relationship. Horizontal and vertical error bars denote the 25th and
75th percentiles of calculated fugacities of PAHs in PE and seawater. Filled circles indicate that 25th percentile values were not
detected
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(Rusina et al. 2007, 2010; Lohmann 2012). Because the time
required to attain thermodynamic phase equilibrium increases
with increasing KPE/sw, as well as decreasing the diffusion
coefficient in PE, more hydrophobic and larger PAHs such
as BaP and DBahA are not likely in phase equilibrium
between PE debris and seawater. Because PAHs are not
intentionally included in PE, the longer time required for
phase equilibrium makes them slowly flow to PE debris
from seawater. 

Implications for plastic debris on the transport of organic
contaminants

Although the fugacity analysis in this study was limited to
eight selected PAHs and one plastic material, a clear tendency
in the changes in the fugacity ratio was observed with increasing
log KPE/sw. Because PAHs are ubiquitous and in general not
directly added to plastic materials during manufacture, relatively
lower fugacity for more hydrophobic PAHs in plastic particles
indicate net absorption of those PAHs from water to plastic

debris. This could be explained by a high partition coefficient
and slow internal diffusion of more hydrophobic organic
chemicals. This might be similar for other anthropogenic
chemicals not intentionally added to the plastic matrix although
further validation is required.

The roles of plastic particles as “vectors” for anthropogenic
chemicals would be also limited because the net direction of
chemical flow is likely from seawater to plastic debris especially
for more hydrophobic and thus more bioaccumulative organic
chemicals. Fugacity is also the driving force for bioaccumulation
processes (Gobas et al. 1999). Although the increased rate of
chemical transfer from plastic particles to water was observed
in a few laboratory studies (Bakir et al. 2014), it should be
noted that the fugacity of test chemical species in plastic
phase was much higher than in water because test chemicals
were initially spiked in plastic particles. It is unlikely that
hydrophobic chemicals flow against the fugacity gradient if
the fugacity of a chemical in plastic phase is lower than that
in water. However, chemical additives in plastic material

Fig. 1. Continued
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should have a much higher fugacity in the plastic phase than
fugacity in seawater for long time and plastic debris may be

important sources of those chemicals in bioaccumulation
processes in the marine environment.

Fig. 2. Relationships between the logarithm of the fugacity ratio (log (fPE/fsw)) and log KPE/sw. Median fugacity of each PAH in PE was
used, whereas median fugacity values of PAH in seawater were taken from (a) Berrojakbiz et al. (2011), (b) Chizhova et al.
(2013), (c) Fuoco et al. (2009), (d) Lohmann et al. (2009), (e) Lohmann et al. (2013), (f) Ma et al. (2013), (g) Monteyne et al.
(2013), (h) Nizzetto et al. (2008), and (i) Wu et al. (2011). Solid lines represent fPE/fsw=1 (i.e., phase equilibrium) and dashed
lines represent 0.1 and 10
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4. Conclusion

Fugacity analysis on 8 selected PAHs showed a clear
tendency that the ratio of fugacity in polyethylene to that in
seawater decreased with increasing partition coefficient
between polyethylene and seawater (KPE/sw). This suggests
that time for phase equilibrium between polyethylene debris
and seawater would be longer for more hydrophobic and
higher molecular weight PAHs. The results imply that the net
direction of intermedia transport of hydrophobic anthropogenic
pollutants other than plastic additives would be from seawater
to marine plastic debris, although the analysis was limited to
8 PAHs and further confirmation is required.
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