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EDITOR'S NOTE:

This is 1 of 15 invited commentaries in the series “Current Understanding of Distribution, Effects, and Risks Posed by
Microplastics in the Environment.” These peer-reviewed commentaries reflect the views and knowledge from international

experts and are intended to inform our current understanding of microplastics fate and effects in the environment.

ABSTRACT

Despite a recent boom in research on the environmental fate, distribution, and harmful effects of chemical substances
associated with marine plastic debris, no consensus has been reached on whether chemicals originating from microplastics

cause serious environmental harm. For the risk assessment of chemical contaminants associated with microplastics, it would be

useful to group organic chemicals into 2 categories: additives and nonadditives. Whereas plastic particles are not likely to be

diffuse sources of chemicals that are not intentionally added to plastic products, continuous leaching of additives would result

in higher concentrations, at least at a local scale. Unlike plasticizers and flame retardants, which have been relatively well
investigated, antioxidants and photostabilizers have been rarely studied, even though many of them are highly hydrophobic
and are not readily biodegradable. More research on the fate and effects of chemicals via microplastics should focus on those
additives. Integr Environ Assess Manag 2017;13:494-499. ©2017 SETAC
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INTRODUCTION

Recent evidence on the global distribution of microplastics
has raised serious concerns about potential adverse ecologi-
cal and human health effects (Moore 2008). One of the most
important hypotheses on the adverse effects is that micro-
plastics can carry harmful chemicals and facilitate their
transport into organisms (Teuten et al. 2009). A strong
sorption capacity of microplastics and nanoplastics for
hydrophobic organic chemicals has been determined by
measuring (ad)sorption or partition coefficients for many
chemicals, such as persistent organic pollutants, pharma-
ceuticals, and a few plastic additives (Lee et al. 2014;
Velzeboer et al. 2014; Wang et al. 2015; Wu et al. 2016).

Because of the high sorptive capacity of microplastics for
hydrophobic organic chemicals, adverse effects caused by
microplastics in combination with organic pollutants have
been demonstrated (e.g., Ma et al. 2016). A few laboratory-
scale studies also showed that plastic particles have the
potential to accelerate the uptake of chemicals by organisms
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that ingest plastic particles (Chua et al. 2014; Wardrop et al.
2016). However, the observed effects in test organisms would
not be environmentally relevant because the dose of plastic
particles in laboratory tests is extremely greater than in the
field conditions of 100 to 1000 g/km?, even in the inner
accumulation zones of the ocean gyres (Cdzar et al. 2014).
Modeling studies have revealed that for aquatic organisms,
fractional intake via the ingestion of plastic particles would be
much smaller than other direct and dietary uptake routes
(Gouin et al. 2011; Bakir et al. 2016). Another aspect that
needs to be considered is the direction of chemical flows due
to the difference in chemical potential. Many anthropogenic
chemicals that are not added in plastic products sorb to
plastic particles because of very high partition coefficients
between plastic and seawater (Lee et al. 2014; Velzeboer
et al. 2014; Liu et al. 2016). However, the fugacity of these
persistent chemicals in the plastic phase might be lower
than those in water or in the organisms if the time to
attain phase equilibrium is long (Lee et al. 2017). In this case,
plastic particles should be regarded as a sink for those
hydrophobic chemicals and might be used as widespread
passive samplers for highly hydrophobic organic chemicals
(Karapanagioti et al. 2011). However, the opposite is
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expected for plastic additives because they are intentionally
added to plastic products up to a few tens of percent
(Al-Odaini et al. 2015; Jang et al. 2016).

It is of great interest whether organic chemicals from
microplastics cause serious environmental risks. Recent
findings are still not sufficient to reach a consensus on this
issue. Until now, the majority of studies on the fate,
distribution, and effects of hydrophobic organic pollutants
associated with plastic particles have focused on plastic
additives including flame retardants (Al-Odaini et al. 2015;
Jang et al. 2016), plasticizers (Fries et al. 2013), and other
nonadditives (e.g., persistent organic pollutants, polycyclic
aromatic hydrocarbons, and pharmaceuticals and personal
care products), which are not intentionally added to plastic
matrix (Karapanagioti et al. 2011; Rochman et al. 2013; Lee
et al. 2014; Velzeboer et al. 2014; Wang et al. 2015; Liu et al.
2016). Although studies have been conducted for brominated
flame retardants, plasticizers such as di-ethylhexyl phthalate,
and unbound monomers such as bisphenol A, there are a
variety of chemicals that are intentionally added to plastic
products to enhance physical and chemical properties. A few
nontarget screening studies revealed that microplastics
contain various chemical substances such as antioxidants
and photostabilizers (Gauquie et al. 2015; Rani et al. 2015).
Many of them are hydrophobic and might be released slowly
from widespread plastic particles. Leaching of brominated
flame retardants from marine Styrofoam buoys would be an
example (Jang et al. 2016). In the present study, we evaluate
the environmental fate of representative chemical additives in
plastic products based on their properties and propose future
research needs on hydrophobic organic chemicals associated
with plastic particles in the environment.

ROLES OF PLASTIC PARTICLES ON DYNAMIC
TRANSPORT PROCESSES OF ORGANIC
CHEMICALS

Fate and transport of organic chemicals in the environment
are described by both chemical equilibrium and kinetics.
Major processes that determine the fate and transport of
organic chemicals and the role of plastic particles are
described in Figure 1. Sorption equilibrium between plastics
and water is evaluated by equilibrium partition or sorption
coefficients. Diffusion in the plastic phase is often the
rate-limiting process governing the overall rate of the transfer
either from water to plastic or from plastic to water. Thus, the
phase equilibrium between plastic and water may not be
attained under environmental conditions. The fugacity
gradient for additives may be opposite from that for
nonadditives under the environmental conditions as illus-
trated in Figure 1.

Where biomagnification occurs, the fugacity of hydrophobic
organic chemicals in organisms at higher trophic levels will be
greater than that in water. For nonadditives, plastics are not
likely to play important roles because fugacity in plastic
particles cannot be greater than that in water. For additives,
comparison of the rate of chemical uptake via plastic particles
with the rate of uptake in bioconcentration and/or

Organisms at upper trophic levels

Intake and
leaching inside gut

[ Biomagnification

Phytoplankton
Partitioning [ Bioconcentration
(leaching)
Microplastic «———» Water
- ™

.

Microplastic Water boundary

—— Additives

Fugacity --- Non-additives

Figure 1. Dynamic processes determining the fate and transport of
hydrophobic organic chemicals from plastic particles.

biomagnification processes would be useful. A few laboratory
studies have revealed that organisms may gain hydrophobic
additives such as brominated flame retardants by ingesting
plastic particles (e.g., Chua et al. 2014; Wardrop et al. 2016),
whereas modeling studies suggested that the additional
uptake via the ingestion of plastic particles would be minimal
(Gouin et al. 2011; Bakir et al. 2016). Further studies are
required to allocate contributions of competing processes
with multimedia monitoring of hydrophobic additives.

ORGANIC ADDITIVES IN PLASTIC PRODUCTS
Many different types of plastic additives exist, including
fillers, pigments, plasticizers, stabilizers, flame retardants,
antistatic and conductive additives, food contact, and
medical additives, among others (Murphy 2001). Table 1
shows examples of chemical substances, with their physical
and chemical properties, that are widely used as plastic
additives. The domain of physical and chemical properties is
very wide. As shown, many organic substances are not
expected to be readily biodegradable using a battery of
BIOWIN™ models (USEPA 2012). The range of hydropho-
bicity based on log Ko, is also very wide. Experimental values
are available only for relatively well-studied plasticizers and
flame retardants (World Health Organization 1996; Tittlemier
et al. 2002; Braekevelt et al. 2003; Hunziker et al. 2004;
Kuramochi et al. 2007, 2014; Arnot et al. 2009). Many
additives containing long alkyl chains are predicted to have
extremely high log K, values and very low water solubilities
estimated by the EPI Suite™ program (USEPA 2012). These
superhydrophobic additives are not likely to bioaccumulate
because of their large molecular size and very limited water
solubility, which leads to an extremely long bioconcentration
half-life (Kwon et al. 2016). However, many additives such as
benzotriazole UV stabilizers and phenolic antioxidants are
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expected to have log K,,, values between 5 and 8 and have
potential for bioaccumulation. Although experimental stud-
ies are lacking on their environmental partitioning, metabolic
transformation, and biodegradability, they might accumulate
through the marine food chain based on estimated high
partition coefficients and low biodegradability. Field obser-
vations of phenolic antioxidants and benzotriazole UV
stabilizers in sediments, suspended particles, and fish partly
support this (Wang et al. 2003; Lu et al. 2016; Wick et al.
2016), although it is not certain that plastic debris is a
significant source of them in the environment. Thus, future
research should be directed toward those additives that
might have persistence, bioaccumulation potentials, and
toxicity. Because additives such as flame retardants have
other emission sources, the estimation of quantitative
contribution of microplastics on the global and local emission
of plastic additives is required. Although a few studies have
evaluated toxic potentials of additives such as UV stabilizers
(Kawamura et al. 2003; Morohoshi et al. 2005), ecotoxic
effects of plastic additives are largely unstudied.
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migrate readily from plastic products during their use. However,
they may leach as plastics undergo weathering in the
environment. Thus, it is required to know the freely diffusible
fraction of additives and to know the changes in the leachable
fraction as plastic particles degrade in the environment.

POTENTIAL HARMFUL EFFECTS OF LEACHING
AND PERSPECTIVES FOR FUTURE RESEARCH

Because the amount of various additives in plastic may be
very high (Murphy 2001), plastic particles in the environment
can be regarded as passive dosing media for these additives.
Depending on the properties of additives, they can be
released during the lifetime of plastic particles in the
environment. The leaching rates of various additives in
environmental conditions, as well as organisms’ gut con-
ditions, need to be investigated. Assuming the level of plastic
particle density in the open ocean (Cdzar et al. 2014), the
resulting concentration of additives in water or other
environmental media is likely to be extremely low. However,
whether high plastic debris accumulation zones in the
semienclosed and enclosed embayment are influenced by
the leaching additives needs to be evaluated. For instance,
hexabromocyclododecane in Styrofoam buoys massively
used in oyster culture farms contributed to enrichment
of hexabromocyclododecane in surrounding sediment
(Al-Odaini et al. 2015). Furthermore, plastic particles provide
surfaces for growth of attached species so-called plastisphere
(Zettler et al. 2013; McCormick et al. 2014) that might
be exposed to very high concentrations of additives. Plastic
debris of densities that are greater than water has rarely been
studied. This type of debris tends to sink in the sediment and
may have a longer lifetime than floating particles exposed to
UV light and oxygen. Higher persistence and chronic release
of additives from sunken plastics would cause ecological
concerns, especially for benthic organisms.
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