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Abstract: The aim of this study is to predict landslide sus-
ceptibility caused using the spatial analysis by the appli-
cation of a statisticalmethodology based on theGIS. Logis-
tic regression models along with arti�cial neutral network
were applied and validated to analyze landslide suscepti-
bility in Inje, Korea. Landslide occurrence area in the study
were identi�ed based on interpretations of optical remote
sensing data (Aerial photographs) followed by �eld sur-
veys. A spatial database considering forest, geophysical,
soil and topographic data, was built on the study area us-
ing the Geographical Information System (GIS). These fac-
tors were analysed using arti�cial neural network (ANN)
and logistic regressionmodels to generate a landslide sus-
ceptibility map. The study validates the landslide suscep-
tibility map by comparing themwith landslide occurrence
areas. The locations of landslide occurrence were divided
randomly into a training set (50%) and a test set (50%). A
training set analyse the landslide susceptibilitymap using
the arti�cial network along with logistic regression mod-
els, and a test set was retained to validate the prediction
map. The validation results revealed that the arti�cial neu-
ral networkmodel (with an accuracy of 80.10%)was better
at predicting landslides than the logistic regressionmodel
(with an accuracy of 77.05%). Of the weights used in the
arti�cial neural network model, ‘slope’ yielded the high-
est weight value (1.330), and ‘aspect’ yielded the lowest
value (1.000). This researchapplied two statistical analysis
methods in a GIS and compared their results. Based on the
�ndings,wewere able to derive amore e�ectivemethod for
analyzing landslide susceptibility.
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1 Introduction
Landslide largely occurs in hilly or mountainous areas. In
most cases of landslide, spots with shattered zones caused
by crustal movements are a�ected by frequent concen-
trated torrential heavy rainfall. In case of Korea, the heavy
rainy season, usually between June to September, is the
period when landsides occur. Korea recently experiences
frequent landslide. Quite recently it is noted that land-
slide in 2001, 2002, 2006 and 2010 increased landslide fre-
quency. As one of major natural geological hazards, land-
slides cause signi�cant damages in people and property.
Due to landslides caused by heavy rainfall, much damage
was caused in Inje. As therewas little e�ort to predict them
and to assess the consequences of suchevents, thedamage
was extensive. Through scienti�c analysis identify and as-
sess landslide-susceptible areas and, by taking appropri-
ate preparatory measures.

Using GIS as the basic analysis tool to map landslide
susceptibility can be e�ective for manipulation of spatial
data and management, together with particular equitable
models for the analysis. Recently, Research on landslide
susceptibility evaluation using GIS has been conducted,
and many of the studies used probabilistic models. One
of the statistical models available, an arti�cial neural net-
work and logistic regression models, have also been ap-
plied to landslide susceptibility mapping. There are other
methods for susceptibilitymapping, such as the safety fac-
tor models and the geotechnical model.

Several methods have been suggested to assess land-
slide susceptibility and increasingly these use various
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other models along with geographic information systems
(GIS). Previous studies have applied probabilistic models
including an AHP: Analytic Hierarchy Process, Arti�cial
Neural Network, Dempster-Shapfer theory of evidence,
fuzzy logic and Monte Carlo methods [1–11] among statis-
tical models, the logistic regression model has also been
applied to landslide susceptibility mapping [12–27]. More
sophisticated assessments have involved weight of evi-
dence approaches and frequency ratio [25–38] Research
on rainfall probability calculation has primarily been lim-
ited to improving the rainfall probability predictions accu-
racy and to studies targeting water resources [39–43]. Re-
cently, analysis of landslide is used in the high-resolution
airborne laser scanning (LiDAR) and soil moisture content
changes [44–47].

The study area, Deokjeok-ri around Inje, Kangwon-do
was selected where landslide counts were highest in the
damaged areas. where landslide occurred on July 14, 2006.
The areas of landslide occurrence were detected in the
study area by interpretation aerial photographs and �eld
surveys (Figure 1 and Figure 2). A �owchart outlining the
methodology is shown in Figure 3. For applying and val-
idating landslide susceptibility models, forest, land use,
soil and topography spatial databases were built on the
analysis. From the databases, 15 factors were selected.
Using the calculated factors and detected landslide lo-
cations, two landslide analysis models, an arti�cial neu-
ral networks and logistic regression, were implemented.
Using the calculated factors and detected landslide loca-
tions, two landslide analysis models, an arti�cial neural
networks and logistic regression, were implemented. For
the application, arti�cial and statistical neural network
program and GIS program were used. Lastly, validation
for quantitative, prediction curvemethods such as success
and prediction rates were used to verify the results.

2 Spatial data sets
To analyses probabilistic landslide susceptibility, accurate
detection the area of landslide occurrence is very impor-
tant. This research has analyzed aerial photographs, one
kind of optical remote sensing data, for landslide occur-
ring location. In addition, the result has been validated
through �eld survey; because �eld survey is must neces-
sary for remote sensing data. In order to obtain signi�cant
andcost-e�ective landslide information, the applicationof
remote sensingmethods including aerial photographs and
�eld surveys is used. In this study, 1:10,000–1:50,000-scale
aerial photographs, which were taken in 2009, were ex-

amined to identify landslide occurrence areas, whichwere
veri�able by �eldwork. Recent landslides were detected in
the aerial photographs from breaks in the bare soil, forest
canopy, or geomorphic characteristics typical of landslide
scars, such as �ow tracks, head and side scarps, and soil
and debris deposits below a scar. To assemble database, it
is to assess the surface area and number of landslides in
the study area, 693 landslides were mapped in the 37km²
study area (Figure 1). The research area is not large area,
so only one weather station is located on this area. The
research supposes that e�ect of groundwater and rainfall
amount of landslide occurring period is same on the study
area. Thus, the research has concentrated on indexes for
locational di�erence than e�ects of rainfall and ground-
water.

Maps of landslide occurrence were built on vector for-
mat spatial database through the ArcGIS software. The
map included 1:50,000 scale geological map, 1:25,000
scale soil maps, and 1:25,000 scale forest maps. Contour
and survey base points elevation value from topographic
map were a Digital Elevation Model (DEM). The DEM with
a 10 m resolution, was used to aspect, curvature, slope,
stream power index (SPI) and topographic wetness index
(TWI). The DEM data are utilized in replace of the altitude.
Soil database includes soil drainage, material, texture,
thickness and topography. Forest database include timber
age, density, diameter and type. The geologywas extracted
from the geological database. The spatial database con-
structed in this study is shown in Table 1.

To calculate the probability of landslides, 15 factors
relevant to landslides were considered. Aspect, curvature,
slope steepness, SPI and TWI, soil drainage, soil material,
soil texture, soil thickness, timber age, timber density, tim-
ber diameter, timber type and geologywere extracted from
the spatial database as factors contributing to potential
landslides. Also, Altitude data is not used because it is not
according to the landslide high correlation.

When locating landslide points in the study areas dur-
ing the 2006 rainy season, aerial photos before and after
landslide are �rst compared, and then �eld surveys are
conducted to assess the accuracy of the detected locations.
The aerial photogrammetry before landslide is that issued
by the National Geographic Information Institute (NGII)
(1/20,000; taken on 2005.04.04), and that after landslide
is that presented by Daum portal (www.daum.net) (50cm;
taken on 2008.03.04). As seen in Table 1, themaps of land-
slide distribution, topography, geology, forest and soil are
collected as data for analyzing landslide susceptibility in
Inje, the study are.

As for topographic map, the DEM is prepared from
data transformation and interpolation of the digital topo-

Brought to you by | Korea University Library
Authenticated

Download Date | 4/19/16 10:05 AM



The spatial prediction of landslide susceptibility | 119

Figure 1: Study area map and landslide location map.

Figure 2: Photographs of landslide in the study area (Above : Near road in the �eld).
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Figure 3: Overall methodology flow chart.

Table 1: Data layer of study area.

Classi�cation Factors Data Type Scale Data Source
Geological Hazard Landslide Point 1:5,000 Result of Research
Topographic Map Slope

Aspect
Curvature
TWI(Topographic Wetness Index)
SPI(Stream Power Index)

Grid 1:5,000 National Geographic Infor-
mation Institute

Geological Map Geology Polygon 1:50,000 Korea Institute of Geo-
science and Mineral Re-
sources

Forest Map Timber diameter
Timber type
Timber density
Timber age

Polygon 1:25,000 Korea Forest Research Insti-
tute

Soil Map Topography
Soil drainage
Soil material
Soil thickness
Soil texture

Polygon 1:25,000 National Academy of Agri-
cultural Science
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graphical map of 1:5,000, and from the DEM. The slope
indicates geographical angle, and the aspect indicates di-
rection of geographical slope. The curvature is based on
the 0 value, with slope concavity increasing as the value
becomes negative, and becoming more convex with posi-
tive values. The value 0 indicates the slope is �at. As for
soil factor, the soil topography, the soil texture, the soil
drainage, the soil material, and the soil e�ective thickness
were prepared from the detailed soil map (1:25,000). The
topography is classi�ed by the topography of the areas
where soils are distributed, the soil texture indicates soil
particle size, parent material refers to the rock �oor from
which the soils are formed, the drainage refers to water
draining, and the e�ective soil thickness indicates the ef-
fective thickness of soil. Also, the timber type factor, the
timber diameter, the timber age, and the timber density of
forest are prepared from the forest map (1:25,000). Geolog-
ical factor is from the geological map (1:250,000). The data
with di�erent formats, accuracies, scales and geometrics
were almost not unusable to directly implement to this re-
search. Due to this reason, these dates were modi�ed into
applicable data input for analysis and arti�cial neural net-
work along with logistic regression modeling (Figure 3).

Application of frequency ratio is known as to iden-
tifying correlations by grade between the landslide loca-
tions distributions and landslide relevant factors. Also it
is to calculate landslide susceptibility indexes from the fre-
quency ratio per grade of each factor to predict locations
with landslide susceptibility of landslides. Table 2 is veri-
fying the cause of using these factors.

3 Methodology

3.1 Arti�cial neural network model

This study frequently used an arti�cial training algorithm
as neural network method. By using a set of examples, as-
sociated values of input and output the arti�cial neural
network model is trained. Until targeted minimal error is
found between the desired and actual output values of the
network, the back-propagation algorithm trains the net-
work. Once the training is complete, the network is used
as a feed-forward structure to produce the entire data clas-
si�cation [43].

The weight between layers was acquired by training
the neural network, so the importance of each factor or
contribution can be calculated. A GIS spatial database
was used as landslide locations and input data were used
as training regions. Of the various arti�cial neural net-

work methods, the back-propagation method was used.
The program [47], usingMATLAB, was partly converted for
landslide analysis by adapting the input and output rou-
tines for the GIS data use.

The training sites were chosen from the landslide-
relevant factors. The back-propagation algorithm was im-
plemented tomeasureweights between the input layer, the
hidden layer and output layer by modifying the number
of hidden layers and the learning rate. The weights were
enforced in the entire study. The calculated index values
were transformed into an ARC/INFO GRID by applying the
GIS. Also the landslide susceptibility map was built by us-
ing the GRID data.

A three-layered feed-forward network was applied to
MATLAB on the base of the framework presented by [47].
The back-propagation training algorithm is trained using a
set of examples of associated input and output values. The
hidden and output layer neurons process their inputs by
multiplying each input by a corresponding weight, sum-
ming the product, and then processing the sum using a
nonlinear transfer function to produce a result. The train-
ing in this study is a task whereby sites where landslides
have and have not occurred are clearly perceived by the
neural network, and then theneural network can calculate
the results on the output, or the weights of landslide oc-
currence. According to [43], selecting representative sites
is more important than counting the samples in training
samples. Therefore, only 50% of the total cells of land-
slide sites are extracted to be landslide sites for training,
and the values of the 15 landslide-related factors are regu-
lated to be between 0.1 and 0.9, for the sigmoid function,
used for improving inference in the neural network, which
has a value between 0 and 1. Landslide susceptibility ex-
pected by the back-propagation algorithm is 0.9; weights
were determined through repetitive back-propagation al-
gorithm training in order to reduce the error between ex-
pected output and actual output to 0.1 (Table 3). To calcu-
late weights, the neural network structure is established
to be 15(input layer) × 32(hidden layer) × 2(output layer),
while the relative weights of the factors are calculated as
the maximum repetitive number before reaching the tar-
geted error of 2,000 and the learning rate of 0.01. As the
calculated weights are granted to each factor, landslide
susceptibility for the whole study area is prepared.

3.2 Logistic regression model

Logistic regression allows for multivariate regression rela-
tions investigation between several independent variables
and one.
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Table 2: Frequency ratio between landslide and related factors.

Class No. of
land-
slide

% of
land-
slide

No. of
pixels
in do-
main

% of
pixels
in do-
main

Frequency ra-
tio

Aspect Flat 0 0 12418 0.85 0
North 47 6.78 178128 12.14 0.56
Northeast 38 5.48 144479 9.85 0.56
East 114 16.45 129251 8.81 1.87
Southeast 166 23.95 169033 11.52 2.08
South 86 12.41 170758 11.64 1.07
Southwest 86 12.41 196686 13.41 0.93
West 83 11.98 231150 15.76 0.76
Northwest 73 10.53 235075 16.02 0.66

Curvature Concave 279 40.26 505504 34.46 1.17
Flat 138 19.91 464390 31.66 0.63
Convex 276 39.83 497084 33.88 1.18

Slope (degree) 0 5° 3 0.43 65606 4.47 0.1
6 10° 4 0.58 84813 5.78 0.1
11 15° 15 2.16 123479 8.42 0.26
16 20° 23 3.32 166365 11.34 0.29
21 25° 76 10.97 235666 16.06 0.68
26 30° 113 16.31 255125 17.39 0.94
31 35° 200 28.86 239647 16.34 1.77
36 40° 129 18.61 171456 11.69 1.59
41 90° 130 18.76 124821 8.51 2.2

TWI (Topographic Wetness
Index)

1 141 20.35 147220 10.04 2.03

2 112 16.16 146647 10 1.62
3 122 17.6 147249 10.04 1.75
4 92 13.28 146696 10 1.33
5 83 11.98 147288 10.04 1.19
6 59 8.51 146537 9.99 0.85
7 35 5.05 146873 10.01 0.5
8 27 3.9 146217 9.97 0.39
9 10 1.44 146182 9.96 0.14
10 12 1.73 146069 9.96 0.17

SPI (Stream Power Index) 1 61 8.8 174124 11.87 0.74
2 42 6.06 143919 9.81 0.62
3 68 9.81 143629 9.79 1
4 77 11.11 144084 9.82 1.13
5 75 10.82 143808 9.8 1.1
6 93 13.42 143968 9.81 1.37
7 79 11.4 143793 9.8 1.16
8 88 12.7 143425 9.78 1.3
9 55 7.94 143227 9.76 0.81
10 55 7.94 143001 9.75 0.81

Geology Banded gneiss 692 99.86 1375722 93.78 1.06
Granite 1 0.14 91256 6.22 0.02

Timber diameter Non forest area 231 33.33 605267 41.26 0.81
Very small diameter 357 51.52 604447 41.2 1.25
Small diameter 102 14.72 241453 16.46 0.89
Medium diameter 3 0.43 15809 1.08 0.4Brought to you by | Korea University Library

Authenticated
Download Date | 4/19/16 10:05 AM



The spatial prediction of landslide susceptibility | 123

Table 2: Cont.

Class No. of
land-
slide

% of
land-
slide

No. of
pixels
in do-
main

% of
pixels
in do-
main

Frequency ra-
tio

Timber density Non forest area 231 33.33 605267 41.26 0.81
Loose 357 51.52 604447 41.2 1.25
Moderate 102 14.72 241453 16.46 0.89
Dense 3 0.43 15809 1.08 0.4

Timber type Non forest area 9 1.3 166668 11.36 0.11
Mixed broad-leaf tree 27 3.9 86092 5.87 0.66
Pine 305 44.01 528932 36.06 1.22
Needle and broad 81 11.69 126759 8.64 1.35
Arti�cial pine 26 3.75 17463 1.19 3.15
Rigida pine 4 0.58 25395 1.73 0.33
Korea nut pine 170 24.53 310110 21.14 1.16
Arti�cial Larch 68 9.81 197038 13.43 0.73
Larch 0 0 1569 0.11 0
Arti�cial mixed broad-leaf 0 0 2849 0.19 0
Poplat 3 0.43 4101 0.28 1.55

Timber age Non forest area 13 1.88 193632 13.2 0.14
1st age 218 31.46 411635 28.06 1.12
2nd age 120 17.32 237161 16.17 1.07
3rd age 92 13.28 175273 11.95 1.11
4th age 246 35.5 406194 27.69 1.28
5th age 4 0.58 43081 2.94 0.2

Soil drainage No Data 0 0 4084 0.28 0
Well drained 33 4.76 140333 9.57 0.5
Somewhat poorly dray 403 58.15 520168 35.46 1.64
Moderately well dray 257 37.09 802393 54.7 0.68

Soil thickness (cm) No Data 0 0 4084 0.28 0
20 254 36.65 743545 50.69 0.72
50 26 3.75 76714 5.23 0.72
100 406 58.59 573763 39.11 1.5
150 7 1.01 68872 4.69 0.22

Soil material No data 0 0 4084 0.28 0
Valley alluvium 4 0.58 66756 4.55 0.13
Gneiss residuum 17 2.45 62787 4.28 0.57
Fluvial alluvium 0 0 2327 0.16 0
Colluvium 511 73.74 784732 53.49 1.38
Alluvial colluvium 161 23.23 546292 37.24 0.62

Soil texture No data 0 0 3640 0.25 0
Sandy loam 0 0 33337 2.27 0
Rocky loam 404 58.3 540093 36.82 1.58
Loam 18 2.6 68905 4.7 0.55
Silt loam 3 0.43 29545 2.01 0.21
Rocky sandy loam 0 0 4152 0.28 0
Very rocky loam 7 1.01 54059 3.69 0.27
Overflow area 261 37.66 733247 49.98 0.75
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Table 2: Cont.

Class No. of
land-
slide

% of
land-
slide

No. of
pixels
in do-
main

% of
pixels
in do-
main

Frequency ra-
tio

Topography No data 0 0 4084 0.28 0
Valley area 6 0.87 53673 3.66 0.24
Valley and alluvial 0 0 36886 2.51 0
Plains 0 0 1658 0.11 0
Piedmont slope area 684 98.7 1345227 91.7 1.08
Lower hilly area an 2 0.29 13781 0.94 0.31
Fluvial plains 0 0 268 0.02 0
Alluvial fan 1 0.14 11401 0.78 0.19

In the present situation, the dependent variable is binary,
representing the presence or absence of landslides. Quan-
titatively, the relationship between the occurrence and its
the dependency on several variables can be expressed as
below:

p = 1/(1 + e − z) or p = ez/(1 + ez). (1)

P is an event occurring probability and e is the natural log-
arithm. In the present, p is an estimated landslide prob-
ability based on the intrinsic properties only, which is
known as “susceptibility” in this context. The probability
varies from 0 to 1 on an S-shaped curve and, z is the lin-
ear combination. It follows that logistic regression which
involves �tting the data to an equation of the form

z = b0x0 + b1x1 + b2x2 + · · · + bnxn . (2)

While b0 is the model intercept, bi (i = 0, 1, 2, . . . , n)
represents the slope coe�cients of the logistic regression
model, and xi (i = 0, 1, 2, . . . , n) are independent vari-
ables [48]. The linearmodel is then a logistic regression for
thepresence or landslides absence (present conditions) on
the independent variables (pre-failure conditions).

Using the formulae, a landslide susceptibility map
was built. The logistic regression analysis was presented
by dividing the study area into grid squares of 5 m by 5 m.
the 15 factors data were converted to an ASCII format for
statistical package use.

The decision process for logistic multiple regression
is, as with all multivariate application, setting the objec-
tives is the �rst step in the analysis. The analysis proceeds
with the derivation of the logistic function and the deter-
mination ofwhether a statistically signi�cant function can
be derived to separate the two groups. The logistic multi-
ple regression results are then assessed for predictive ac-
curacy by developing a classi�cation matrix. Next, inter-
pretation of the discriminant function determines which

of the independent variables contributes the most to dis-
criminating between the groups. Finally, the logistic func-
tion should be validated with a holdout sample [16].

4 Result

4.1 Prediction of landslide susceptibility

The �nal weights between layers acquired during the arti-
�cial neural network training and the contribution or im-
portance of each of the 15 factors to predict are shown in
Table 3. Because the initial weights were assigned random
values, the results were not the same. This research calcu-
lates ten times to allow the results to achieve similar val-
ues. 0.004 to 0.015 is the ranges of the Standard deviation
(SD); so, there is not much e�ect on the results from ran-
dom sampling. For easy interpretation, the average values
were calculated, and the values were divided by the aver-
age of the weights of the factor with the minimum value.
Among theweights, the slopepresented thehighestweight
index, 1.330. Negative curvature values steep slope were
more susceptible to landslides. Soil drainage (1.177) is the
second major parameter contributing to landslide occur-
rence. Soilmaterial (1.131) is the third important parameter
contributing to landslide occurrence. Theweights analysis
shows that the less important parameters are soil thick-
ness (1.022), soil texture (1.024) and timber type (1.053).
The results show the most important factor is slope. The
Gaussian nature of distribution of susceptibility zones sta-
tistically regarding the landslide areas approves the appli-
cability of arti�cial neural network to landslide suscepti-
bility mapping in the study (Figure 4). Based on the re-
sult, slope is the most important index for choosing pri-
ority order for managing continuous landslide, along with
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restoration and prevention, on the research. Furthermore,
index should be managed with its index weight.

By using this method, the signi�cance (Sig.) and
the logistic multiple regression coe�cients (B) of re-
lated variables were calculated (Table 4). By applying
the maximum-likelihood model, the coe�cients were es-
timated. Because the relationship between independent
variables and the probability was nonlinear in the logis-
tic multiple regression model, parameter estimation [30]
needs an iterative algorithm. Most values at a signi�cance
(Sig.) level) were less than 0.05, which means the factor
is in�uential in landslide occurrence. 0.278 was the out-
put value corresponding to the Hosmer and Lemeshow
goodness-of-�t test [49].

By using the maximum-likelihood method, the coe�-
cients (B) were estimated, and the coe�cients that made
the observed results most ‘likely’ were selected. Because
the relationship between the independent variables and
probability was nonlinear in the logistic regressionmodel,
for parameter estimation [41], an iterative algorithm was
used. If a coe�cientwas positive, its transformed log value
was greater than 1, meaning that the modeled event is
more likely to occur. If a coe�cient was negative, its trans-
formed log valuewas less than 1, and the event is less likely
to occur. A coe�cient of zero (0) had a transformed log
value of 1.0, meaning that this coe�cient does not a�ect
the likelihood of the event. In the case of numerical data,
positive associations were observed with slope, and nega-
tive associations were observed with TWI and SPI. For ex-
ample, in the categorical data, the cases of ‘No Data’ and
‘Valley alluvium’ both yielded negative e�ects, whereas
Gneiss residuum had a positive e�ect. After the interpreta-
tion, three equations were developed to predict the proba-
bility of landslide occurrence.

z = (0.023 × Slope) + (−0.005 × SPI) + (−0.030 × TWI)
+ Aspect + Curvature + Geology + Soil drainage
+ Soil material + Soil texture + Soil thickness
+ Timber diameter + Timber type + Timber density
+ Timber age + Topography − 57.710. (3)

A landslide susceptibility map was built based on formu-
late above. The logistic regression analysis was used by di-
viding the study area into a 5 m × 5 m size grid. The fac-
tors were �tted to this and changed to an ASCII �le to the
statistical package use. By using the logistic regression co-
e�cient (Table 4) and Equations (3), the landslide proba-
bility was calculated for the nine cases. As there was no
coe�cient was available for a certain class, the average
value (i.e. unity) was used. The computed probability val-
ues were mapped to allow interpretation as illustrated in

Figure 5. The values were classi�ed into equal areas and
then grouped into �ve classes for visual.

As illustrated in Figure 4 and Figure (5), the com-
puted susceptibility values were mapped to allow inter-
pretation. To ease visual interpretation, the susceptibil-
ity values were classi�ed into �ve classes (No Data: 0%,
Veryhigh: 100∼88,High: 87∼76,Medium: 75∼58 andLow:
57∼1) based on area. As increase value of the suscepti-
bility, the landslide susceptibility increases; as well as a
lower value indicates a lower susceptibility. Figure 4 is
landslide susceptibility map considering arti�cial neural
network and Figure 5 is landslide susceptibility map with
logistic regression.

4.2 Validation

The produced prediction indexes are necessary for veri�-
cation because of assessment values. In this study, the sus-
ceptibility map accuracy by each analysis method is veri-
�ed using a Landslide Susceptibility Indices (LSI), which
is expressed as a ratio value of the prediction index value
from the prediction on an area of landslide per equal area.
In this study validation, the calculated LSI values for all
cells in the study were sorted in descending order. Then,
the landslides (%) were divided into classes of the accu-
mulated area ratio (%) according to the LSI value. In order
to quantitatively compare the results, the areas under the
curve (AUC) were calculated again with the total area of 1
indicating perfect prediction accuracy. In order to qualita-
tively assess the prediction accuracy, the AUC can be used.

In order to compare the quantitative result, the areas
under the curve were calculated again as the total area
is 100% which represents the accuracy of perfect predic-
tion. Therefore the area under a curve can be used to qual-
itatively assess the accuracy of prediction. The results of
the landslide susceptibility maps were validated using the
landslide locations. For landslide location, remote sens-
ing data has been validated through �eld survey. The to-
tal number of landslide locations is 694. Approximately
50% (347) of its total landslide locations were used for ar-
ti�cial neural network, logistic regression and susceptibil-
ity analysis. For validation, the remaining 50% (347) were
used.

The success rate validation results, from comparing
the susceptibility calculation results and landslide occur-
rence location using an arti�cial neural network and logis-
tic regression models, are shown in appear in Figure 6. Al-
though, neural network model validation result (80.10%)
is a little better than the ones from the logistic regression
model validation result (77.05%). Neural network model
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Table 4: Logistic regression coe�cient between landslide and related factors.

Factor Class Logistic regression coe�cient (B) Signi�cance level (Sig.)
Slope - 0.023 0.128
TWI (Topographic
Wetness Index)

- -0.03 0.087

SPI (Stream Power
Index)

- -0.005 0.865

Aspect Flat -11.453 0
North 0.205

Northeast 0.238
East 1.072

Southeast 0.585
South -0.029

Southwest -0.098
West -0.173

Curvature Concave 0.072 0.489
Flat -0.125

Convex 0
Geology Banded gneiss 2.747 0.007

Granite 0
Water 0

Timber diameter Non forest area -11.138 0.016
Very small diameter 1.141

Small diameter -15.583
Medium diameter 0

Large 0
Timber type Non forest area 11.933 0.001

Mixed broad-leaf tree -0.897
Needle and broad -0.136

Rigida pine 15.273
Pine 0.059

Arti�cial Larch 0.426
Larch 0

Korea nut pine -0.004
Arti�cial pine 0.337

Timber density Non forest area 0 0.147
Loose 0.228

Moderate 0.532
Dense 0

Timber age Non forest area 0 0.032
1st age 0
2nd age 13.586
3rd age 15.836
4th age 0.906
5th age 0
6th age 0

Soil drainage No Data -4.981 0.999
Well drained -0.927

Somewhat poorly dra -0.649
Moderately well dra 0
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Table 4: Cont.

Factor Class Logistic regression coe�cient (B) Signi�cance level (Sig.)
Soil material No Data -11.632 0

Valley alluvium -12.643
Gneiss residuum 2.902
Fluvial alluvium 0

Colluvium 0
Alluvial colluvium 0

Soil thickness No Data 0 0.99
20m -12.108
50m -11.024
100m -10.854

Soil texture No Data -12.614 0.821
Very rocky loam 0.045

Sandy loam -19.546
Rocky loam -0.562

Rocky sandy loam -11.449
Overflow area -8.361

Topography No Data 0 0.77
Valley area -0.627

Valley and alluvial -10.245
Plains -0.265

Piedmont slope area 9.587
Lower hilly area 11.07

Alluvial fan 0

Figure 4: Landslide susceptibility map based on arti�cial neural network.
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Figure 5: Landslide susceptibility map based on logistic regression.

success result is 84.9% and logistic regression model suc-
cess result is 80.01%. In addition, a di�erence of valida-
tion and success result of neural network model is about
2.28%, and the di�erence between the results of validation
and success of the logistic regressionmodel is about 4.8%.

5 Discussion and conclusion
In the area of Inje, Korea, Landslide locationwas identi�ed
using aerial photographs and a landslide-related database
was constructed for the landslide susceptibility analysis.
Using 15 factors, arti�cial neural network and logistic re-
gression models were applied and validated for the study
using GIS. The relative importance and weight of factors
were calculated through the arti�cial neural network use.
The ‘slope’ showed the highest weight value (1.330), fol-
lowed by the ‘soil drainage’ with a value of 1.177. The ‘as-
pect’ presented the lowest value at 1.000, and the ‘soil
thickness’ was 1.023. The results show that the ‘slope’ was
the most important factor as well as it was 1.4 times more
important than ‘aspect’ in landslide susceptibility map-
ping. Additionally, logistic regression model got the out-
put value (0.278) using Hosmer and Lemeshow Goodness-
of-Fit test [42]. The output valuemore than0.05means that

the logistic regression model is valid. Thus the methodol-
ogy of this study is using logistic regression model.

Next, landslide susceptibility maps were constructed
using arti�cial neural network and logistic regression
models. These maps revealed high levels of prediction ac-
curacy: 80.10%and77.05% for the arti�cial neural network
and logistic regressionmodels, respectively. Therefore, the
arti�cial neural network model yielded more accurate re-
sults than the logistic regression model. Based on this val-
idation result, the resulting susceptibility map is consid-
ered to be a satisfactory agreement between the computed
results and the landslide inventory. Usually, the validation
results revealed satisfactory agreement between the exist-
ing data and susceptibility map for landslide location.

Themaps resulting from the use of the arti�cial neural
network and logistic regressionmodels had similar spatial
distribution patterns. The middle north and southwest ar-
eas of the site were predicted to have respectively high and
very high susceptibility. These areas have steep (sandy)
loam soil, slopes, a thick soil layer, and are hilly or moun-
tainous. The areas of high and very high susceptibility
should be a priority concern during landslide-prevention
planning. The site’smiddle north regionwas found tohave
low and very low potential in all the susceptibility maps.
Almost all of these regions are categorized by low-lying
land, river areas, silt loam soil, and a thin soil layer.
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Figure 6: Illustration of cumulative frequency diagram showing landslide susceptibility index rank (x-axis) occurring in cumulative percent
of landslide occurrence (y-axis) for susceptibility.

An arti�cial neural network model has more advantages
than logistic regression model. An arti�cial neural net-
work model is simple and the process of input, calcula-
tion, and output is easily understood. Moreover, the ar-
ti�cial neural network model can be calculated by fac-
tor’s weights. The weighting given to the various factors
that are important in our landslide-susceptibility analysis
o�ers their relative signi�cance ranking. Data is needed
in the statistical package use for the logistic regression
model, and later reconverted to incorporate it into the GIS
database. Furthermore, large amounts of data cannot be
processed by the statistical package easily and quickly.
However, the degree of landslide susceptibility rating can
be analyzed quantitatively. Using arti�cial neural network
model, susceptibility can be qualitatively analyzed, and
there are advantages, including continuous and discrete
data processing, extraction of a good result for a complex
problem and a multi-faceted approach to a solution.

This study holds signi�cance by applying more than
two statistical methodologies based on the GIS and con-
ducting comparative analysis. However, there are also sev-
eral limitations to this research. First, the use of multiple
scales can undermine the accurate interpretation of data.
Second, the categories of TWI andSPI generated fromDEM
can innately include errors in DEM. Lastly, despite the sig-
ni�cance of the water �ow and con�uence in the occur-
rence of landslides, this study simply applied TWI and SPI.
SM parameters (e.g. TVDI) [46, 47] for land drainage can
improve the susceptibility assessment for landslides.

Landslides are known as one of the most hazardous nat-
ural disasters. So, government and research institutions
have attempted to assess the landslide risk and hazard
and to show its spatial distribution. The landslide suscep-
tibility maps helps planners and engineers to select areas
for further detail survey and locations for development.
The results provide basic data to assist slope management
and land use planning in the Inje area. The used methods
are valid for assessment purposes and generalized plan-
ning, although themethodsmight be less useful at the site-
speci�c scale where geographic diversity and local geolog-
ical may prevail. For the models to be more generally ap-
plied,more landslide andmore case studies conducted are
needed.
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