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Abstract

Topographic correction methods have been widely used prior to land cover identification in sloping terrain because the topographic
variation on the Earth’s surface can interfere with the classifications. The topographic correction involves the normalization of brightness
or surface reflectance values from the slanted to the horizontal plane. Several topographic correction models have been proposed, and a
quantitative evaluation method is needed for these models because the performance can vary according to the surface cover types and
spectral bands. In this study, we proposed an efficient method to evaluate the performance of topographic correction models through
measuring the histogram structural similarity (HSSIM) index estimated from the sunlit and sun-shaded slope areas before and after
the correction. We tested the HSSIM index by using three different land cover types derived from Landsat-8 Operational Land Imager
(OLI) images and eight commonly used topographic correction models. When the proposed HSSIM index was compared with the visual
analysis technique, the results matched exactly. Using the HSSIM index, the best correction methods were then determined, and the best
ones included the statistical-empirical or SCS+C methods (where SCS+C refers to the sun-canopy-sensor plus C-correction) for the R,
G, and B bands and the Minnaert+SCS method for the NIR, SWIR-1, and SWIR-2 bands. These results indicate that (i) the HSSIM
index enables quantitative performance evaluations of topographic correction models and (ii) the HSSIM index can be used to determine
the best topographic correction method for particular land cover identification applications.
� 2017 COSPAR. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Remotely sensed images have been widely used for land
cover identification (Srivastava et al., 2012; Moreira and
Valeriano, 2014; Wei et al., 2017). Many identification
methods have been proposed, and over time, these methods
have achieved remarkable performance improvements
(Szuster et al., 2011; Srivastava et al., 2012). However,
http://dx.doi.org/10.1016/j.asr.2017.06.054
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the images are affected by the topographic effect due to
the location of the Sun, sensor angle, and curvature of
the terrain. This effect is more intense over mountainous
areas. In a mountainous area, the terrain will reflect weaker
or stronger solar radiation according to the slope than the
horizontal surface. Consequently, sun-shaded areas and
sunlit areas can be grouped into different classes even if
the land surface types of both areas are the same. This is
a main factor that has hindered further improvements in
land cover identification (Ren et al., 2009). Since the topo-
to evaluate the performance of topographic correction models used to
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graphic effect causes errors in land cover identification over
mountainous areas, it needs to be corrected.

Topographic correction involves the normalization of
brightness or surface reflectance values from the slanted
to the horizontal plane (Richter, 1997, 1998). The topo-
graphic correction methods that have been developed can
be categorized according to surface reflection types
(Ediriweera et al., 2013; Singh and Talwar, 2013). The first
category assumes that the ground surface is a Lambertian
surface that reflects solar energy equally in all directions.
However, because this approach is very unrealistic, it often
leads to underestimations or overestimations (Mishra et al.,
2009). In the Lambertian approach, cosine correction
(Teillet et al., 1982), sun-canopy-sensor (SCS) correction
(Gu and Gillespie, 1998), and C-HuangWei correction
(Huang et al., 2005) techniques can be applied. The second
category involves non-Lambertian (semi-empirical) meth-
ods, in which surfaces are modeled by using additional
parameters. The non-Lambertian approach can be used
in conjunction with the C-correction (Teillet et al., 1982),
SCS+C correction (Soenen et al., 2005), and Minnaert
and Minnaert+SCS correction techniques (Smith et al.,
1980; Reeder, 2002). The final category involves empirical
methods, which use an empirically determined calibration
coefficient. The statistical-empirical model is a commonly
used empirical method (Teillet et al., 1982). Further com-
parisons and details of the topographic correction methods
can be found in the literature (Smith et al., 1980; Teillet
et al., 1982; Meyer et al., 1993; Gu and Gillespie, 1998;
Reeder, 2002; Huang et al., 2005; Soenen et al., 2005;
Gao and Zhang, 2009; Mishra et al., 2009; Reese and
Olsson, 2011; Gao et al., 2014).

The performance of the topographic correction models
is largely dependent on land surface types (Goslee, 2012;
Singh et al., 2015). Thus, the best topographic correction
model may change according to the land surface types of
a study area. Consequently, it is quite necessary to choose
the best model for a given image. The best model selection
process plays an important role in achieving high object-
based identification accuracies (Vanonckelen et al., 2013;
Moreira and Valeriano, 2014). Performance evaluations
of topographic correction models have been be carried
out by (i) using in-situ measurements, (ii) comparing the
land cover identification before and after topographic cor-
rections, and (iii) applying simple statistical analyses
(Mishra et al., 2009; Moreira and Valeriano, 2014). The
evaluations based on in-situ measurements are associated
with high costs and time-consuming procedures (Reese
and Olsson, 2011; Zhang et al., 2011). The before and after
identification approach has been widely used to assess the
correction performance (Dorren et al., 2003; Blesius and
Weirich, 2005; Gao and Zhang, 2009; Reddy and Blah,
2009; Vanonckelen et al., 2013), but it does not allow us
to evaluate the correction performance of each band and
the results largely depend on the land cover types, numbers
of bands used for identification, methods used for the
bands, etc. The statistical approaches have been carried
Please cite this article in press as: Park, S.-H., et al. A quantitative method
improve land cover identification. Adv. Space Res. (2017), http://dx.doi.o
out by using simple statistical parameters such as the mean,
standard deviation (SD), coefficient of determination (r2),
root mean square error (RMSE), etc. (Gu et al., 1999;
Tokola et al., 2001; Dorren et al., 2003; Riano et al.,
2003; Vincini and Frazzi, 2003; Moreira and Valeriano,
2014). However, simple statistical parameters are not rigor-
ous enough for evaluations of the performance of topo-
graphic correction models. One of the most widely used
evaluation methods involves the quantification of the
reduction of the dependence between cos i, the incidence
angle, with respect to the normal surface. In this method,
researchers measure the slope of the linear regression
between cos i and values of a study area. If the slope of
the regression is close to zero, the data are assumed to have
been successfully corrected (Gao and Zhang, 2009). How-
ever, this method is not valid for land surfaces where slope
orientation determines the land cover or growth stage
(Hanston and Chuvieco, 2011). Recently, an evaluation
method called the structural similarity (SSIM) index has
been proposed by Sola et al. (2014). This method compares
the luminance, contrast, and structural similarity between a
synthetic horizontal image, which is generated by consider-
ing the ground reflected, direct, diffuse, and global horizon-
tal irradiances, and a topographically corrected real image.
However, the procedure for producing the synthetic hori-
zontal image is complicated, yet it is required to evaluate
whether the data are generated well.

The principle of topographic correction is to increase the
reflectance/radiance values of the sun-shaded slopes and
decrease the values of the sunlit slopes so that the values
of both slopes are made similar. Thus, the topographic cor-
rection models should quantitatively evaluate how similar
the values of both slopes are. In addition, the variation in
dispersion after correction within the same slope should
also be assessed, and it should be shown how much the
image has been corrected based on the original image. In
other words, it is necessary to evaluate the topographic cor-
rection models from the above three viewpoints.

In this study, we propose a quantitative method to eval-
uate the performance of topographic correction models
used to improve land cover identification. We introduce
the histogram structural similarity (HSSIM) index, which
is calculated from the difference of the standard deviations
and the histograms between the sunlit and sun-shaded
slope areas before and after topographic correction. Our
proposed method exploits the structural similarity between
the histograms of the sunlit and sun-shaded slope areas. It
should be noted that the proposed HSSIM index represents
the probability of identifying the same land cover areas as
the same objects.

2. Study area and datasets

Three Landsat-8 Operational Land Imager (OLI)
images were used for this study. Six spectral bands ranging
from blue to short wavelength infrared-2 (SWIR-2) were
selected for the performance evaluation of topographic
to evaluate the performance of topographic correction models used to
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corrections. The radiometric quantization of OLI (12-bit)
is higher than those of the Landsat Thematic Mapper
(TM) and Enhanced Thematic Mapper Plus (ETM+) (8-
bit). This higher radiometric quantization allows for signif-
icant improvements, i.e., better characterizations, in the
sun-shaded area (Irons et al., 2012). The surface reflectance
was used instead of digital values in this study to reduce
atmospheric effects in mountainous regions (Soenen
et al., 2008). It was estimated by the cosine approximation
(COST) atmospheric correction method (Chavez, 1996).

Test image 1 was obtained on May 26, 2015, with sun
zenith and azimuth angles of approximately 23.9� and
127.8�, test image 2 was obtained on April 24, 2015, with
sun zenith and azimuth angles of approximately 30.7�
and 138.3�, and test image 3 was obtained on December
17, 2014, with sun zenith and azimuth angles of approxi-
mately 63.4� and 159.9�, respectively. All of the test sam-
ples for images were obtained from the north-eastern part
of the Gangwon Province, South Korea, between 37�270
and 37�530N and 128�050 and 128�380E. Table 1 summa-
rizes the characteristics of the test images, and Fig. 1 shows
the three test samples. The dominant land cover types of
the test samples were composed of deciduous forest,
broad-leaved deciduous forest, and snow. The test samples
were chosen in such a way as to allow for the consideration
of common land cover types in mountainous areas.

The dominant land cover type of test sample 1 was dense
deciduous forest, as shown in Fig. 1a, and the overall color
was green because test image 1 was acquired during the
summer season. Test sample 2 consisted of broad-leaved
deciduous forest (Fig. 1b), the overall color was brown
because test image 2 was acquired during the spring season.
The western part of test sample 2 displayed some green
color because this part consisted of coniferous forest. The
dominant land cover type of test sample 3 was snow. Snow
had been falling steadily in this region one month prior to
the acquisition of the image. Snowfall was recorded at 5
± 7 cm according to the Korea Meteorological Adminis-
tration. This sample had a high contrast between sunlit
and sun-shaded slopes because the sun zenith angle was
higher than that of the other test samples as presented in
Fig. 1c. Fig. 1d shows the land cover map in the test area.
The land cover map was constructed from aerial photos
with a spatial resolution of 5 m.

For the topographic analysis, the Shuttle Radar Topog-
raphy Mission (SRTM) digital elevation model (DEM) was
used (Reuter et al., 2007). The SRTM DEM provides high-
quality DEM data with a ground resolution of about 30 m.
The horizontal and vertical accuracies of the SRTM DEM
Table 1
Characteristics of the test samples of images used in this study.

Sample No. Date Zenith angle

1 2015/05/26 23.90�
2 2015/04/24 30.73�
3 2014/12/17 63.36�
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were about 20 m and 16 m, respectively. The horizontal
and vertical datum were referenced to the WGS84 (World
Geodetic System 1984) and EGM96 (Earth Gravitational
Model 1996) geoids, respectively (Slater et al., 2006; Su
and Guo, 2014). The slope and aspect were calculated from
the SRTM DEM by using the third-order finite difference
weighted by the reciprocal of the squared distance algo-
rithm (Zhou and Liu, 2004). The mean altitude was about
727 m, and it ranged from about 166 m to 1570 m in the
sample area. The mean and maximum slopes were approx-
imately 20.8� and 65.5�, respectively.
3. Methods

3.1. Short overview of the topographic correction models

Eight types of topographic correction methods were
used for this study as listed in Table 2. These methods
included the cosine, statistical-empirical, C-correction,
SCS, SCS+C, C-HuangWei, Minnaert, and Minnaert
+SCS techniques (Smith et al., 1980; Teillet et al., 1982;
Gu and Gillespie, 1998; Reeder, 2002; Huang et al., 2005;
Soenen et al., 2005). Both the C-correction and SCS+C
models require parameter C. The role of empirical param-
eter C is to increase the denominator of the model equation
and weaken the over-correction by adding it to the cosine
correction method. Normally, C can be estimated from a
linear regression analysis between the surface reflectance
and the cosine of the incidence angle (cos i) (Meyer et al.,
1993; Gu and Gillespie, 1998). Details about the calcula-
tion of the incidence angle can be found in Robinson
(1966). The relationship between the surface reflectance
and incidence angle is given by:

q ¼ m � cos iþ b; ð1Þ
where q is the surface reflectance before topographic cor-
rection and m and b are the model parameters in the linear
regression analysis. Then, parameter C is calculated by
dividing the offset by the slope (C ¼ b=m) (Teillet et al.,
1982).

It is well known that the Minnaert and Minnaert+SCS
models are able to effectively correct the topographic effects
in mountainous regions by using the constant k (called the
Minnaert constant) and k0 (Reeder, 2002). The Minnaert
constant k indicates the sensitivity of topographic effects
according to land cover types (Gu and Gillespie, 1998). k
can be calculated by linearizing the model equation as
follows:
Azimuth angle Dominant land cover type

127.82� Deciduous forest
138.33� Broad-leaved deciduous forest
159.92� Snow cover

to evaluate the performance of topographic correction models used to
rg/10.1016/j.asr.2017.06.054
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Fig. 1. Test samples in (a) deciduous forest, (b) broad-leaved deciduous forest, and (c) snow-covered areas, and (d) land cover map used for the reference
data. All test samples show Landsat OLI bands 4, 3, and 2 as red, green, and blue, respectively. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Table 2
Topographic correction models used for this study.

Topographic correction models Model equations References

Cosine qh ¼ q cos hs
cos i Teillet et al. (1982)

Statistical-empirical qh ¼ q� m � cos iþ m � cos hs Teillet et al. (1982)
C-correction qh ¼ q cos hsþC

cos iþC Teillet et al. (1982)

SCS qh ¼ q cos hs �cos hn
cos i Gu and Gillespie (1998)

SCS+C qh ¼ q cos hs �cos hnþC
cos iþC Soenen et al. (2005)

C-HuangWei qh ¼ ðq� qminÞ cos hs�cos imin

cos i�cos imin

� �
þ qmin Huang et al. (2005)

Minnaert qh ¼ q cos hn
ðcos i�cos hnÞk Smith et al. (1980)

Minnaert+SCS qh ¼ q ðcos hsÞk
0
cos hn

ðcos iÞk0 Reeder (2002)

where qh is the surface reflectance after correction, q is the surface reflectance before correction, qmin is the minimum surface reflectance of the original
image, C is the empirical constant, and k and k0 are the Minnaert constants in the Minnaert and Minnaert+SCS models, respectively.
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ln qh þ k lnðcos i � cos hnÞ ¼ lnðq cos hnÞ; ð2Þ
where qh is the surface reflectance after correction and hn is
the terrain slope estimated from the DEM. We can replace
lnðcos i � cos hnÞ, lnðq cos hnÞ, and ln qh into x, y, and m,
Please cite this article in press as: Park, S.-H., et al. A quantitative method
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respectively, and hence, Eq. (2) can be represented as
follows:
y ¼ kxþ m: ð3Þ
to evaluate the performance of topographic correction models used to
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The sample data for estimating parameters C and k can
be selected to exclude rough terrain, roads, and urban areas
(Baraldi et al., 2010). We decided to exclude pixels with
slope angles less than 10� and larger than 60�. The param-
eters were then calculated from the linear regression analy-
sis by using Eqs. (1) and (3) for each spectral band. The
regression method iteratively refines the estimated parame-
ters by using the 99% confidence level. This leads to the
removal of outliers.
3.2. Performance assessment of the topographic correction
models

The performance evaluation of the topographic correc-
tion models was performed by comparing the reflectance
difference before and after the topographic correction in
the sunlit and sun-shaded slope areas. The evaluation
exploits the fact that (1) the reflectance in the two areas
is quite different and (2) the reflectance difference must be
reduced after topographic correction. Since the sunlit and
sun-shaded slope areas have lower and higher incidence
angles, respectively, the two areas can be easily distin-
guished from an incidence angle map. Training sets used
for the performance assessment can be collected from the
incidence angle map by using the following equations:

qsdw : 1 <
i� i
ri

< 2

qsun : �2 <
i� i
ri

< �1;

ð4Þ

where qsdw and qsun are the reflectance values in the sun-
shaded slope area and sunlit slope area, respectively. i is
the incidence angle, i is the mean of the incidence angles,
and ri is the standard deviation of the incidence angles.
The training sets in both slope areas include some of the
pixels used for estimating parameters C and k.

Here, we introduce the HSSIM index to evaluate the
correction performance. The index can indicate the proba-
bility of identifying the same land cover areas as the same
objects. The HSSIM index is calculated from (i) the disper-
sion of reflectance values and (ii) the structural similarity of
image histograms in the sunlit and sun-shaded slope areas
before and after topographic correction. The index is
defined by:

HSSIMðx; yÞ ¼ V ðx; yÞa � Rðx; yÞb; ð5Þ

where x and y represent the reflectance values in the sunlit
and sun-shaded slope areas, respectively. a > 0 and b > 0
are weighting parameters used to adjust the relative impor-
tance between V(x, y) and R(x, y). V(x, y) is the variation
ratio between the original and corrected images in the x

and y data as given by:

V ðx; yÞ ¼ rx � ry

rx0 � ry0

; ð6Þ
Please cite this article in press as: Park, S.-H., et al. A quantitative method
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where rx0 and ry0 are the standard deviations in the x and y

data of an original image, respectively. rx and ry are the
standard deviations in the x and y data of a corrected
image, respectively. R(x, y) is the histogram structural
similarity ratio, which is defined as follows:

Rðx; yÞ ¼ 1� rHðxÞHðyÞ
1� rHðx0ÞHðy0Þ

; ð7Þ

where H(x0) and H(y0) are the histogram data of x and y in
the original image, respectively. H(x) and H(y) are the x

and y histogram data in the corrected image, respectively.
rHðx0ÞHðy0Þ is the correlation coefficient between the x and y

histogram data in the original image, and rHðxÞHðyÞ is the
correlation coefficient in the corrected image. The correla-
tion coefficient is calculated as given by (Eskicioglu and
Fisher, 1995):

rHðxÞHðyÞ ¼
Pn

i¼1ðHxðiÞ � HxÞ � ðHyðiÞ � HyÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðHxðiÞ � HxÞ2 �

Pn
i¼1ðHyðiÞ � HyÞ2

q ; ð8Þ

where HxðiÞ and HyðiÞ are the reflectance values of the i-th
bin of the histograms in the x and y histogram data, respec-

tively. Hx and Hy are the means of the x and y data,
respectively.

The variation ratio V(x, y) compares the standard
deviation differences before and after topographic correc-
tion in the sunlit and sun-shaded slope areas. In general,
the dispersion of reflectance values in the sunlit slope
area is larger than that in the sun-shaded slope area.
This produces a higher standard deviation in the sunlit
slope area than that in the sun-shaded slope area. Sup-
posing that the topographic correction works well, the
standard deviation of the corrected image must be smal-
ler in the sunlit slope area according to the decreased
reflectance values. On the other hand, the standard devi-
ation in the sun-shaded slope area can increase after cor-
rection. A very high standard deviation in the corrected
sun-shaded slope area means that the result has been
over-corrected. Thus, we can evaluate whether the data
have been corrected well or not through the variation
ratio. The correction is well done if the variation ratio
is very close to zero; meanwhile, the topographic effect
causes no variation if (V(x, y) = 1), and the topographic
effect is over-corrected if (V(x, y) > 1), i.e., when the
variation ratio is larger than 1.

The histogram structural similarity ratio R(x, y) com-
pares the histogram similarity between the sunlit and sun-
shaded slope areas before and after topographic correction.
The R(x, y) is calculated by using the correlation coefficient
between the two image histograms extracted from the sun-
lit and sun-shaded slope areas. The ideal value for R(x, y) is
zero, which is obtained when the histogram correlation
coefficient after topographic correction is 1. The R(x, y)
works similarly to V(x, y). The topographic effect causes
no variation when R(x, y) = 1, and the topographic effect
is over-corrected when R(x, y) > 1.
to evaluate the performance of topographic correction models used to
rg/10.1016/j.asr.2017.06.054

http://dx.doi.org/10.1016/j.asr.2017.06.054


6 S.-H. Park et al. / Advances in Space Research xxx (2017) xxx–xxx
The HSSIM index will produce different values depend-
ing on the weights a and b. A value of 1 as the weight is
appropriate when we do not consider the relative impor-
tance of the two factors. The variation ratio can be empha-
sized as more important by setting the a weight to be
relatively larger than the b weight when calculating the
HSSIM index. On the other hand, the HSSIM ratio can
be highlighted by having a larger b weight. If the V(x, y)
and R(x, y) show that one is corrected and the other is
over-corrected, the HSSIM value may be larger or lesser
than 1 depending on the weights. If both the V(x, y) and
R(x, y) are over-corrected (V(x, y) > 1 and R(x, y) > 1),
the HSSIM index will unconditionally be larger than 1
regardless of the weights. Conversely, if the topographic
effect is well corrected and both V(x, y) and R(x, y) are less
than 1, the index will also be smaller than 1 regardless of
the weights. Consequently, the HSSIM index indicates that
(i) the topographic correction is perfectly done if it is close
to 0 and (ii) the topographic correction is not properly
applied if it is larger than 1.

This HSSIM index can be used for comparing the per-
formance among topographic correction methods. Various
topographic correction methods have been proposed (see
Table 2), and the best topographic correction method can
be different according to the spectral band used and surface
type. Therefore, the HSSIM index can be effectively used to
select the best topographic correction method.
4. Results and discussion

4.1. Topographic correction

Fig. 2 shows the results of the regression analysis for
estimating parameter C (Fig. 2a) and k (Fig. 2b) in the
SWIR-1 band of test image 1. In Fig. 2a, the offset and
slope estimated by the linear regression analysis were about
0.074 and 0.010, respectively. Consequently, the empirical
parameter C was about 7.4 with a low RMSE of 0.004.
To estimate the Minnaert parameter k, the slope was calcu-
lated as shown in Fig. 2b. The estimated constant k was
about 0.277 with a RMSE of 0.031. The parameters C
Fig. 2. Estimations of the parameters (a) C and (b) k for the SWIR-1 ba
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and k were estimated for each spectral band though the
above procedure.

Figs. 3–5 show the true color composite Landsat-8 OLI
red, green, and blue bands, respectively, to highlight the
difference between the results. These results are located in
the visible analysis area of Fig. 1d. The results showed that
several topographic correction methods well compensated
for the topographic effects in the sun-shaded area and sun-
lit area. In the deciduous forest (Fig. 3), following applica-
tion of the statistical-empirical, C-correction, and SCS+C
models, the topographic effects seemed to be removed
properly (Fig. 3c, d, and f). However, the cosine and SCS
models produced severely over-corrected results
(Fig. 3b and e). Furthermore, the reflectance values of
shadowed and sunlit slopes were reversed. The C-
HuangWei, Minnaert, and Minnaert+SCS models also
did not lead to proper corrections in the RGB composite
images, as seen in Fig. 3g, h, and i. The results of the C-
HuangWei model showed that the shadow effects still
remained in the sun-shaded slopes. The images from the
Minnaert and Minnaert+SCS models tended to be over-
corrected because the blue colors were deeper than those
in the original image. Fig. 4 shows the correction results
from the broad-leaved deciduous forest. A fine perfor-
mance was achieved in terms of eliminating the topo-
graphic effect by the statistical-empirical, C-correction,
and SCS+C models. The Minnaert and Minnaert+SCS
models did not correct the data as well as the models
described above. While the topographic effect was compen-
sated compared with the original images, the outlines of the
mountains still remained in the corrected images. On the
other hand, the results of the cosine and SCS methods
showed over-corrections like in Fig. 3. This means that
they displayed the same performance in the same land
cover types. These results in vegetated areas were similar
to those of other researchers. Specifically, irrigated land
and steppe cultivated areas (Vicente-Serrano et al., 2008),
agricultural regions (Moreira and Valeriano, 2014), and
shrub areas (Gao et al., 2014) all showed good correction
results with non-Lambertian correction techniques. Thus,
our results support such a tendency.
nd in the deciduous forest sample derived by the regression analysis.

to evaluate the performance of topographic correction models used to
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Fig. 3. Topography-corrected images in the deciduous forest area: (a) original image; (b) cosine model; (c) statistical-empirical model; (d) C-correction
model; (e) SCS model; (f) SCS+C model; (g) C-HuangWei model; (h) Minnaert model; (i) Minnaert+SCS model. All images show Landsat OLI bands 4,
3, and 2 as red, green, and blue, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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Notably, the results can change when external factors
such as snow or rain affect the land cover (Fig. 5). Typi-
cally, snowfall will cause different image identification
results by changing the reflectance of the surface. In addi-
tion, snowfall melts rapidly on sunlit slopes but slowly on
sun-shaded slopes. Thus, sun-shaded slopes maintain the
reflectivity characteristics of snow for a long time, but sun-
lit slopes have mixed characteristics in terms of the original
reflectance of the surface and the reflectance of snow
because portions of the snow melt and disappear (Dedieu
et al., 2016; Kour et al., 2016). In this study, the cosine,
SCS, and C-HuangWei corrections models tried to com-
pensate for the topographic effects, but the data were not
corrected perfectly. The statistical-empirical, C-correction,
SCS+C, Minnaert, and Minnaert+SCS methods resulted
in little change or no change after correction, which was
mainly due to the difficulty in estimating the relationship
between the reflectance and incidence angles. This result
Please cite this article in press as: Park, S.-H., et al. A quantitative method
improve land cover identification. Adv. Space Res. (2017), http://dx.doi.o
was similar to the study conducted by Singh et al. (2015).
They carried out topographical corrections with five
AWiFS (Advanced Wide Field Sensor) and MODIS
(Moderate Resolution Imaging Spectroradiometer) images
of the snow-covered Himalayan region and reported that
the cosine, C-correction, Minnaert, and SCS+C models
were not very successful and produced poor results.

4.2. Performance assessment of the topographic corrections

To evaluate the performance of the topographic correc-
tion models quantitatively, we estimated the HSSIM index
between the sunlit and sun-shaded slopes within the whole
study area. Fig. 6 shows the collected training sets within
the visible analysis area obtained by using Eq. (4). The
training sets were mostly located along the mountain slopes
because the surface reflectance values were different on
both sides in this region.
to evaluate the performance of topographic correction models used to
rg/10.1016/j.asr.2017.06.054
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Fig. 4. Topography-corrected images in broad-leaved deciduous forest: (a) original image; (b) cosine model; (c) statistical-empirical model; (d) C-
correction model; (e) SCS model; (f) SCS+C model; (g) C-HuangWei model; (h) Minnaert model; (i) Minnaert+SCS model. All images show Landsat OLI
bands 4, 3, and 2 as red, green, and blue, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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Fig. 7 shows the image histograms calculated from the
training sets in test image 1. The gray color and white color
represent the sun-shaded and sunlit slopes, respectively. In
the near infrared (NIR), SWIR-1, and SWIR-2 bands of
the original image, the sun-shaded and sunlit areas can
be easily distinguished because the sunlit area had a higher
reflectance value than the sun-shaded area. There were
overlapping areas in the histograms of the green and red
bands, but slight differences were detected at the peak of
the histograms. The difference of reflectance values in the
dominant region of the histogram caused the topographic
effect in the original image. Otherwise, the blue band did
not seem to be needed to correct the topographic effects
because there was almost no difference within the
histograms.

As with the blue band in the original image, if the cor-
rection model demonstrated perfect performance, the mean
difference between the two histograms should be zero, and
Please cite this article in press as: Park, S.-H., et al. A quantitative method
improve land cover identification. Adv. Space Res. (2017), http://dx.doi.o
the histograms should have a similar distribution. From
the visual analysis using an RGB composite image, we
observed that the statistical-empirical, C-correction, and
SCS+C models showed excellent performance. They
showed the highest performance because their histograms
were well fitted. Application of the cosine and SCS models
resulted in reversed images compared to those of the orig-
inal images, and the sun-shaded area had a higher reflec-
tance than the sunlit area in the visual bands. These
results clearly showed over-corrected values in the visible
analysis. In the case of the Minnaert and Minnaert+SCS
models, the histograms were slightly reversed similar to
the cosine and SCS correction in the RGB bands, but the
mean differences were largely decreased. In the NIR band,
most of the topographic correction methods tried to mini-
mize the topographic effects, but they did not fully correct
the images. Both the statistical-empirical and Minnaert
+SCS models showed fine results, but there were small
to evaluate the performance of topographic correction models used to
rg/10.1016/j.asr.2017.06.054
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Fig. 5. Topography-corrected images in the snow-covered area: (a) original image; (b) cosine model; (c) statistical-empirical model; (d) C-correction
model; (e) SCS model; (f) SCS+C model; (g) C-HuangWei model; (h) Minnaert model; (i) Minnaert+SCS model. All images show Landsat OLI bands 4,
3, and 2 as red, green, and blue, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

Fig. 6. Training sets used for this study. Red lines indicate the sunlit slopes and blue lines indicate the sun-shaded slopes. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 7. Similarity between both areas before and after corrections in the deciduous forest area. The gray and white colors represent the sun-shaded slope
and sunlit slope, respectively.
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differences between both histograms. The statistical-
empirical and Minnaert+SCS models were successful in
minimizing the topographic effects of the SWIR-1 and
SWIR-2 bands, respectively.

Table 3 shows an example of the HSSIM index calcula-
tion process for the NIR band in the deciduous forest area
(test image 1). The standard deviations for the sunlit slope
(rx0 ) and sun-shaded slope (ry0 ) in the original image were
0.07 and 0.04, respectively. The correlation coefficient
(cHðx0ÞHðy0Þ) between the sunlit slope and sun-shaded slope

in the original image was 0.23. As addressed in the methods
Please cite this article in press as: Park, S.-H., et al. A quantitative method
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section, the standard deviation was larger in the sunlit
slope area. The ideal correction model should reduce the
standard deviation in the sunlit slope area and maintain
the standard deviation in the sun-shaded slope area. The
SCS+C and Minnaert+SCS models performed this faith-
fully. On the other hand, the other models showed that
changes to the two standard deviations had a trade-off rela-
tionship. The variation ratio (V ðx; yÞ) was calculated by the
variation of the standard deviation for both slopes. The
V ðx; yÞ of the cosine and C-HuangWei models were larger
than 1, which means that the topographic effect was
to evaluate the performance of topographic correction models used to
rg/10.1016/j.asr.2017.06.054
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Table 3
Example of the histogram structural similarity (HSSIM) index calculation process for the NIR band in the deciduous forest area.

rx ry cHðxÞHðyÞ V ðx; yÞ Rðx; yÞ HSSIM (a = 1, b = 1) HSSIM (a = 2, b = 1)

Original Image (before correction) 0.07 0.04 0.23 1.00 1.00 1.00 1.00
Cosine 0.06 0.07 0.13 1.51 1.13 1.70 2.57
Statistical-empirical 0.07 0.05 0.89 1.15 0.14 0.16 0.19
C-correction 0.07 0.04 0.80 0.99 0.27 0.26 0.26
SCS 0.06 0.05 0.42 1.00 0.76 0.75 0.75
SCS+C 0.06 0.04 0.84 0.94 0.21 0.20 0.19
C-HuangWei 0.06 0.06 0.83 1.43 0.22 0.32 0.46
Minnaert 0.06 0.05 0.82 1.03 0.24 0.24 0.25
Minnaert+SCS 0.06 0.04 0.92 0.85 0.10 0.09 0.08
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over-corrected. Other models except the Minnaert+SCS
showed a value of about 1. The standard deviation in the
sunlit slope area was reduced, but it was increased in the
sun-shaded slope area. The performance of the Minnaert
+SCS model was the best. This model reduced the stan-
dard deviation in the sunlit slope area while preserving
the standard deviation in the sun-shaded slope area. The
histogram structural similarity ratio (R(x, y)) was calcu-
lated by using Eq. (7). Only the cosine model yielded a
value larger than 1, which means that this model caused
over-correction. The corrected images produced by the
other models showed higher correlations than the original
image. They produced R(x, y) values close to zero; the
smallest value was found with the Minnaert+SCS model.
The HSSIM index was calculated from the multiplication
of V(x, y) and R(x, y), and different values were obtained
depending on the weights. The HSSIM index of the cosine,
statistical-empirical, C-HuangWei, and Minnaert models
increased when V(x, y) was emphasized. These V(x, y) val-
ues were larger than 1. The Minnaert+SCS model, which
showed good performance at both ratios, was selected as
the best model because the calculations produced the clos-
est values to zero.

Table 4 summarizes the HSSIM index values for the
topographic corrections of test image 1. We did not con-
sider the weights because there was no problem in selecting
the best model. It is important to note that the HSSIM
index represents the normalization of the reflectance in
the sunlit and sun-shaded slope areas. We can see that
the two Lambertian approaches (the cosine and SCS) were
limited in the correction of the topographic effect when
Table 4
Similarity between both areas before and after corrections using the HSSIM in
bold.

HSSIM Blue band Green band Red b

Cosine 16.53 3.73 4.56
Statistical-empirical 0.07 0.00 0.02

C-correction 0.11 0.00 0.04
SCS 16.08 3.00 3.27
SCS+C 0.10 0.02 0.03
C-HuangWei 3.02 0.63 1.31
Minnaert 0.90 0.09 0.16
Minnaert+SCS 0.32 0.01 0.08
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compared to the other models. The HSSIM indices were
much larger than 1. In addition, it can be observed that
the statistical-empirical, C-correction, and SCS+C models
displayed better performance in the R, G, B, and SWIR-
2 bands compared to the NIR and SWIR-1 bands. The
C-HuangWei model tried to compensate for the topo-
graphic effect, but its performance was limited. The HSSIM
index values of the C-HuangWei model in the R, G, and B
bands were larger than those in the NIR, SWIR-1, and
SWIR-2 bands. This means that the C-HuangWei model
over-corrected the topographic effect in the R, G, and B
bands. The Minnaert and Minnaert+SCS corrections did
work well in all bands except the B band. Rayleigh scatter-
ing is more effective at short wavelengths. Thus, the reflec-
tance values of both slopes were already similar in the
original B band. The following results show how the topo-
graphic correction was evaluated by using the proposed
HSSIM index values. For the blue band region, the best
HSSIM index values were obtained by the statistical-
empirical model (0.07), followed by the SCS+C (0.10)
and C-correction (0.11) models. In the case of the green
band region, the HSSIM index values obtained by the
statistical-empirical model were the best (0.00), followed
by those of the C-correction (0.00) and Minnaert+SCS
(0.01) models. The topographic correction of the green
band was better than that of the blue. For the red band
region, the HSSIM index values obtained by the
statistical-empirical model were the best (0.02), followed
by those of the SCS+C (0.03) and C-correction (0.04) mod-
els. In the NIR band region, unlike the R, G, and B bands,
the HSSIM index values obtained by the Minnaert+SCS
the deciduous forest area. The best performance models are highlighted in

and NIR band SWIR-1 band SWIR-2 band

1.70 1.43 1.40
0.16 0.11 0.03
0.26 0.19 0.07
0.75 0.67 0.70
0.20 0.17 0.07
0.32 0.46 0.40
0.24 0.19 0.05
0.09 0.06 0.01
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model were the best (0.09), the statistical-empirical model
ranked second (0.16), and the SCS+C model ranked third
(0.20). For the SWIR-1 band, the HSSIM index values cal-
culated by the Minnaert+SCS model were the best (0.06),
followed by those of the statistical-empirical (0.11) and
SCS+C (0.17) models. In the SWIR-2 band region, the best
model was the Minnaert+SCS (0.01), followed by the
statistical-empirical (0.03) and Minnaert (0.05) models. In
summary, when the performance evaluation was performed
with test image 1 using the HSSIM index, the C-correction,
statistical-empirical, and SCS+C models reduced the topo-
graphic effects from the blue band to the SWIR-2 band,
while the cosine and SCS models did not normalize the
reflectance values by the topographic effects. The C-
HuangWei method worked properly in the NIR, SWIR-
1, and SWIR-2 bands, but over-corrections were detected
in the R, G, and B bands. The Minnaert and Minnaert
+SCS models demonstrated good correction performance
in the G, R, NIR, SWIR-1, and SWIR-2 bands, while
the topographic effects in the B band were not well cor-
rected. The same analysis was performed for test image 2
(Fig. 4) and test image 3 (Fig. 5). Table 5 shows a summary
of all the evaluation results for all tests. In the forest cover
case, the statistical-empirical model showed good perfor-
mances in the R, G and B bands, while the Minnaert
+SCS model showed fine results in the NIR, SWIR-1,
and SWIR-2 bands. In the snow cover case, the SCS+C
model was superior to the other models for the B to NIR
bands, while the Minnaert+SCS method was best among
the correction models. Fig. 8 shows the HSSIM indices
of the topographic correction models used for these tests.
As shown in Fig. 8a and b, the cosine, SCS, and C-
HuangWei methods had HSSIM indices larger than 1 in
the forest cover types. This means that the cosine, SCS,
and C-HuangWei methods over-corrected the topographic
effects in the forest cover types. In the snow cover type, all
of the models except the Minnaert model corrected the
data properly (see Fig. 8c). The Minnaert+SCS model
was best in this case. The Minnaert model showed a good
result in the visual analysis (Fig. 5), but it did not yield a
fine result in terms of the HSSIM index. This is because
Table 5
Performance rankings and HSSIM index values for all samples. The above m

Samples Blue Band Green Band Red Band

Sample No. 1 Statistical
(0.07)

Statistical
(0.00)

Statistical
(0.02)

SCS+C
(0.10)

C-correction
(0.00)

SCS+C
(0.03)

Sample No. 2 Statistical
(0.00)

Statistical
(0.01)

Minnaert+SC
(0.06)

C-correction
(0.01)

C-correction
(0.01)

Minnaert
(0.08)

Sample No. 3 SCS+C
(0.10)

SCS+C
(0.05)

SCS+C
(0.02)

SCS
(0.11)

Statistical
(0.07)

Statistical
(0.04)
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the k parameter was larger than 1. If k is larger than 1,
the average and standard deviation of the corrected image
is higher than those of the original image, and hence, the
HSSIM index is larger than 1.

We found overall agreement through comparing the
evaluation results of this study with those of previous stud-
ies. The cosine and SCS models were found to be inappro-
priate in the literature (Gao and Zhang, 2009; Gao et al.,
2014). These models frequently produced over-corrected
results because they assume that the real surface is a Lam-
bertian surface. In general, the other studies concluded that
the C-correction, SCS+C, Minnaert, and Minnaert+SCS
models could give adequate results, but there were differ-
ences in the best correction model. Moreira and
Valeriano (2014) observed only small differences between
the C-correction, SCS+C, and Minnaert models. They
evaluated those models based on the identification accu-
racy, standard deviation, and relationship between spectral
data and solar illumination angle. Hanston and Chuvieco
(2011) found that the statistical-empirical model gave the
best results when analyzing the homogeneity of different
land covers after correction. They evaluated the reduction
of the standard deviation for different land covers.
Richter et al. (2009) reported that the C-correction model
yielded better results for visible bands, but the modified
Minnaert achieved better results for the NIR and SWIR
bands. The performance was evaluated via the ratio
between the standard deviation and mean. On the other
hand, the evaluation of Gao et al. (2014) included the Min-
naert+SCS model unlike other studies and they reported
that the Minnaert+SCS model performed better than other
models in terms of the regression fitting results.

The proposed HSSIM index can be compared with sim-
ilar evaluation methods. Sola et al. (2014) proposed the
SSIM method to compare the corrected image with the
synthetic horizontal image. The reference image in that
study was generated with ground reflection, direct, diffuse,
and global horizontal irradiances. The SSIM method inte-
grates the luminance, contrast, and structure evaluations to
calculate the means SSIM (MSSIM) index as a single over-
all quality. The SSIM and proposed HSSIM methods are
odels rank first, followed by the models listed below.

NIR Band SWIR-1 Band SWIR-2 Band

Minnaert+SCS
(0.09)

Minnaert+SCS
(0.06)

Minnaert+SCS
(0.01)

Statistical
(0.16)

Statistical
(0.11)

Statistical(0.03)

S Minnaert
(0.00)

Minnaert+SCS
(0.02)

Minnaert+SCS
(0.05)

Statistical
(0.00)

Statistical
(0.03)

Statistical
(0.06)

SCS+C
(0.01)

Minnaert+SCS
(0.04)

Minnaert+SCS
(0.03)

Statistical
(0.03)

C-correction
(0.23)

C-correction
(0.29)
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Fig. 8. Comparison of the HSSIM indices among topographic correction models in the test samples: (a) deciduous forest area; (b) broad-leaved deciduous
forest; (c) snow-covered area.
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advanced techniques to quantitatively evaluate topo-
graphic correction results compared to traditional meth-
ods. The traditional evaluation methods just use simple
statistical parameters such as the mean, standard deviation,
coefficient of determination, root mean square error, and
dependence on the illumination angle for the analysis. In
comparison, the SSIM and proposed HSSIM methods
are more suitable for evaluating topographic correction
models because these methods perform a quantitative eval-
uation by assuming an ideal topographically corrected
result. However, there are two key differences between
the proposed method and SSIM method, which are as fol-
lows. First, the SSIM evaluation method requires the syn-
thetic horizontal image as a reference, but its procedure for
producing it is complicated, yet such data are necessary to
Please cite this article in press as: Park, S.-H., et al. A quantitative method
improve land cover identification. Adv. Space Res. (2017), http://dx.doi.o
evaluate whether the synthetic image is well generated. Our
proposed method shows only the similarity of two slopes
after correction compared with the original image, and
hence, it is simple. However, the assumption that both sur-
faces are of the same class should be checked. The problem
of this assumption can be solved when the user selects a
suitable evaluation region (the same class on different
slopes) with a pre-created land surface identification map.
Second, the SSIM method evaluates the best correction
according to index values that are higher than the index
value of the original image, but the proposed HSSIM
method evaluates the correction results with numerical val-
ues based on three criteria, namely, the ideal correction (V
(x, y) and R(x, y) = 0), no variation (V(x, y) and R(x, y)
= 1), and over-correction (V(x, y) or R(x, y) > 1). Thus,
to evaluate the performance of topographic correction models used to
rg/10.1016/j.asr.2017.06.054
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our proposed method can indentify over-corrections, and
we have demonstrated this with the experimental results
for the cosine and SCS models.

The proposed method does have limitations in regard to
the index calculation and its application. In terms of the
algorithm, it is difficult to know which index is the most
effective in the evaluation because it is calculated by multi-
plying two ratio values. The HSSIM index value can be cal-
culated to be close to 0 if one of the ratio values is close
enough to 0 despite over-correction in the other ratio value.
Also, if the variation ratio is 1, we said that this represents
no variation in the methods section, but there may be a
change in the standard deviation values like V(x, y)
= 0.5 * 0.8/0.8 * 0.5 = 1. In terms of application, problems
may be encountered during the collection of training sets
for the topographic correction model when there is no
pre-created land cover identification map. Moreover, the
proposed method has not been adequately demonstrated
in a study area where there are diverse land cover types.

On the basis of the results and discussion, we deter-
mined that our proposed HSSIM index could evaluate
the performance of topographic correction models well at
the test sites despite the above mentioned limitations. Espe-
cially, the proposed approach was found to be useful in
that it can be employed to select the best method to correct
for topographic effects prior to performing a land cover
identification.

5. Conclusions

Several topographic correction methods have been
developed to reduce topographic effects. The performance
of these methods is largely dependent on the land surface
types and spectral bands, and thus, it is very important
to identify the best correction method according to the land
surface types and spectral bands. To accomplish such a
task, a quantitative method to evaluate the performance
of the correction methods is required.

In this study, a quantitative method that uses the
HSSIM index is proposed for evaluations of the perfor-
mance of topographic correction models. The HSSIM
index is estimated from the differences of the standard devi-
ations and the histograms between the sunlit and sun-
shaded slope areas before and after topographic correction.
Three Landsat-8 OLI images and SRTM DEM data were
used for the performance testing, and three surface cover
types, which included deciduous forest, broad-leaved
deciduous forest, and snow-covered areas, were evaluated.
We compared the performance of several topographic cor-
rection models such as the cosine, statistical-empirical, C-
correction, SCS, SCS+C, C-HuangWei, Minnaert, and
Minnaert+SCS models with the proposed method. In the
visual analysis, the statistical-empirical, C-correction,
SCS+C, and Minnaert+SCS models performed good
enough to correct the topographic effects, and all of them
had low HSSIM index values in all bands. In the forest
cover types, the cosine correction, SCS, and C-HuangWei
Please cite this article in press as: Park, S.-H., et al. A quantitative method
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models produced severely over-corrected results according
to the visual analysis, and their HSSIM index values were
larger than 1, which was indicative of over-correction.

We conclude with three main points that were derived
from the results of this research. (i) The results confirm that
the proposed HSSIM index is well-matched with the visual
analysis technique except when the k parameter for the
Minnaert correction is larger than 1. (ii) The best correc-
tion method can be determined in forest and snow-
covered areas by using the HSSIM index values. The best
correction models for the R, G, and B bands in the study
site were the statistical-empirical or SCS+C models, and
the best one for the NIR, SWIR-1, and SWIR-2 bands
was the Minnaert+SCS model. These findings demonstrate
how the proposed method enables us to evaluate the per-
formance of topographic correction models quantitatively.
(iii) It should be noted that we can combine the corrected
images evaluated with the best results for each band as a
hybrid image. The hybrid image should be better at esti-
mating specific land surface types such as vegetation and
snow-covered areas. Such imagery can also contribute to
improved accuracy in land surface identification applica-
tions. In the future, further studies would be useful for
proving that our proposed HSSIM index is valuable. These
studies could include (i) direct comparisons of the proposed
HSSIM method with similar evaluation methods (for
example, the SIIM method) under equal criteria and (ii)
studies showing that the proposed method contributes to
improved land cover identification or identification accu-
racy in practical applications.
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