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Abstract: It is essential to maintain the health of forests so that they are protected against a diverse
range of stressors and show improved resilience. An area-based forest health map is required for
efficient forest management on a national scale however, most national forest inventories are based
on in-situ observations. This study examined methodologies to establish an area-based map on tree
vitality grade using field survey data, particularly that containing information on several trees at
one point. The forest health monitoring dataset of the Republic of Korea was used in combination
with 37 satellite-based environmental predictors. Four methods were considered: Multinomial
logistic regression (MLR), random forest classification (RF), indicator kriging (IK), and multi-model
ensemble (MME) approaches using species distribution models. The MLR and RF produced biased
results, whereby almost all regions were classified as first grade; the spatialization results of these
methods were considered inappropriate for forest management. The maps produced using the IK
and MME methods improved the distinctions between the distributions of five grades compared
to the previous two methodologies however, the MME method produced better results, reliably
reflecting topographical and climatic characteristics. Comparisons with the vegetation condition
index and bioclimate vulnerability index also emphasized the usefulness of the MME. This study is
particularly relevant to the national forest managers who struggle to find the most effective forest
monitoring and management strategies. Suggestions to improve spatialization of field survey data
are further discussed.

Keywords: tree vitality; forest health; spatialization; multi-model ensemble; forest management

1. Introduction

Forests provide a variety of ecosystem services, including carbon storage, water purifi-
cation, and essential habitat for wildlife [1–3]. However, they are increasingly threatened
by various stressors including climate change, invasive species, air pollution, and defor-
estation [4,5]. Healthy forests are essential so that they can withstand a diverse range of
stressors and their resilience is improved. Forest conservation and management seeks
to maintain and improve forest health. As such, it is important to continuously monitor
changes in forests, and understand past and current forest health trends. This information
provides a basis to comprehend relationships between forest conditions and stressors.

Many countries, including some in Europe as well as the United States (US), China,
and the Republic of Korea (ROK) have implemented forest health monitoring (FHM) at
national or regional scales [2,6–8]. Most of these monitoring methods are carried out in-situ
observations however, with recent developments in forest surveying technologies using
remote sensing (RS), there is a growing need to combine both in-situ and RS approaches
to investigate forest health [1,9–11]. In-situ forest monitoring is able to record specific
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information on individual species with accurate surrounding environmental characteristics,
and track long-term changes in forests [11]. However, this form of monitoring is expensive,
time-consuming, and limited to sample points [12]. By contrast, RS techniques can peri-
odically produce standardized information at a low cost over large areas [13]. However,
these techniques are only useful when they are reliably linked with a FHM indicator [11].
Based on the strengths and weaknesses of each approach, it is necessary to integrate in-situ
and RS monitoring techniques to comprehensively understand the status of forest health.
However, there is a lack of research on constructing forest health maps based on forest
surveys, which are also underutilized compared to the budget and time spent on the
surveys themselves.

Despite ongoing efforts to monitor forests, there is an absence of a clear and widely-
accepted concept on forest health [14]. Although there are numerous standardized indica-
tors used in FHM, it is unclear which forests may be considered healthy or unhealthy [15,16].
For example, it is unclear whether a forest may be considered unhealthy if only one tree
species in the sample plot is in decline [16]. A clear definition of forest health varies de-
pending on the purpose of forest management and generally requires social and related
academia consent to be accepted; this issue requires considerable time for resolution. Nev-
ertheless, efficient forest management necessitates the generation of information to assess
forest health using current survey data.

This study aims to construct an area-based map of tree vitality using field survey data
to explore the spatial detail of forest health across the country. We specifically focused on
developing a methodology that spatialized ordinal data containing information on several
species at a plot, using a combination of remotely sensed (satellite-based) environmental
variables. With the aim of doing this, the characteristics of FHM data were examined and
pre-processing methods for spatialization were suggested. In addition, various spatial-
ization strategies were examined and a new approach using a multi-model ensemble of
species distribution models was suggested. Finally, we discussed further steps to improve
constructing forest health map based on field survey data.

2. Forest Health Monitoring of the Republic of Korea: Tree Vitality Data

Since the 1970s, the government of the ROK has been conducting national forest
surveys to acquire basic national statistics on forest resources and continuously monitor
changes [8]. From the Fifth National Inventory (2006–2010), approximately 4000 sample
plots have been deployed across the country using a hierarchical sampling method. Of
these permanent plots, 1000 sample plots were extracted by applying a systematic sampling
method for FHM; this was implemented from 2011 to 2015 [17]. This study used a total of
937 sample plots, excluding sample plots located in non-forest areas, sample plots lacking
information on tree species, and sample plots with errors.

The FHM survey examines all trees located within the sample plot, which constitutes
28 indicators in four categories: ‘Tree health’, ‘vegetation health’, ‘soil health’, and ‘at-
mospheric health’ [8]. Among various indicators, tree vitality in ‘tree health’ category is
recognized as an important indicator to evaluate forest health [14]. Tree vitality is an index
that evaluates the health of a tree based on leaf defoliation, leaf chlorosis, dead branches,
or the degree of leaf discoloration [11,18]; these indicators are considered to represent the
response of trees to overall stress. With weakened tree health, damage occurs in young
tissues, such as shoots, branches, and leaves grown in the same year [18]. Accordingly, for-
est investigators visually check the condition of leaves and branches of trees in the survey
plot to identify tree vitality. Tree vitality is divided into five grades: Healthy, moderately
healthy, slightly declined, moderately declined, and severely declined—and specific criteria
with indicators are as shown in Table 1.
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Table 1. Criteria on tree vitality in forest health monitoring implemented in the ROK [18].

Grade Division Criteria

1 Healthy

Healthy and zero dead main branches.
Crown is normal in the standing state, and the
percentage of dead branches and leaves on the
main branch or the edge of the main branch is
≤10%, or the leaf discoloration rate is ≤10%.

2 Moderately healthy

Main branch death rate, the twig death rate at
the edge of the main branch, or leaf discoloration

is 11–25% of the crown
<25% of the main branches or crowns do not

have leaves due to dead branches.

3 Slightly
declined

The main branch death rate, the twig death rate
at the edge of the main branch, or leaf
discoloration is 26–50% of the crown.

~50% of main branches or crowns do not have
leaves due to dead branches.

4 Moderately declined

Main branch death rate, the twig death rate at
the edge of the main branch, or the leaf

discoloration rate is >50% of the crown, although
it is possible to determine that the tree is alive

with leaves.
~50% of the main branches or crowns do not

have leaves due to dead branches.
5 Severely declined Death in progress.

In total, there is information on 44,440 trees within 937 sample plots; each sample plot
contains from 1 to a maximum of 147 trees (Figure 1). Figure 2 presents the distribution
ratio of the surveyed trees by grade, where the 1st and 2nd grades representing healthy
trees accounted for ~90% of the total.

Figure 1. Forest health monitoring surveys in the ROK: (a) Distribution of survey plots with an example information of tree
vitality in FHM; (b) land cover map of the ROK, produced in 2007 by the Ministry of Environment.
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Figure 2. Distribution ratio of trees surveyed based on grade.

3. Materials and Methods

This study utilized tree vitality information to test various methodologies that were
designed to construct area-based maps. These vitality data were difficult to spatialize
because of the following limitations. Firstly, a representative value was required for each
plot for spatialization however, as mentioned in the Introduction, it was difficult to generate
representative values using information from multiple individual trees because there is
no clear definition of forest health. In particular, as the tree vitality grade is an ordinal
variable determined by an expert, it should not be used to represent the health of the stand
in the survey plot with a simple average value. The lower the grade, the healthier the
tree however, the grading number does not mean that the first grade is twice as healthy
as the second grade. In addition, if the mode value within the plot was adopted as a
representative value, 67% of plots would be assigned as 1st grade and 25.5% of plots would
become 2nd grade; this generates an excessive bias for the 1st and 2nd grades.

In order to overcome these limitations, we considered the distribution ratio of the
grade in the entire survey data to be representative of the true value of the population. As
such, a strategy was adopted to allocate the grades by maintaining this ratio, in which two
methods were applied (Figure 3). As this study sought to establish a map to help manage
forests, priority was given to unhealthy trees (i.e., in descending order from 5th grade) in
both methods.

The first method involved assigning the representative grade in each survey plot
based on the overall grade ratio (the true ratio of the population); this was done using
the distribution ratio by grade. The 5th grade was assigned to the top 0.6% of plots in
the order of the highest 5th grade ratio, the 4th grade was given to the top 1.7% of plots
with the highest 4th grade ratio among the remaining survey plots, and the 3rd grade was
assigned to the top 7.8% of the remaining plots with the highest 3rd grade ratio. This same
method was repeated for the 1st and 2nd grades. After assigning the representative grade
for each plot, multinomial logistic regression (MLR) and random forest (RF) classification
were utilized to spatialize categorical variables.

The second method involved constructing distribution probability maps for each
grade, creating a final grade map by overlapping each probability map. The distribution
probability maps for each grade were established using indicator kriging (IK) and a multi-
model ensemble (MME) of species distribution models. The latter is a new approach that
has been proposed in this study. When overlapping the probability maps, regions were
graded in the same way as the first method of assigning representative grades for each
plot. That is, the top 0.6% region with a high probability of 5th grade was classified as the
5th grade, and the top 1.7% of the remaining region with a high probability of 4th grade
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was classified as 4th grade. The same procedure was repeated for the 1st to 3rd grades. A
detailed description of each method is provided in Section 3.1.

Figure 3. Classification scheme applied to the spatialization methods used in this study.

3.1. Spatialization Methods
3.1.1. Multinomial Logistic Regression

MLR is considered an important model that may be used to analyze categorical
data [19]. It is an extension of a simple binary logistic regression, predicting the probability
of belonging to a category based on multiple independent variables. The regression is
generally effective in predicting dependent variables with more than two categories [20];
independent variables may either be binary or continuous. The maximum likelihood
estimation was used to evaluate the probability of belonging to each category.

MLR was run in R software using the nnet-neural network package [21]. A regression
was constructed with all predictors; then, we selected a final model that minimized Akaike
information criterion (AIC) through the reduced model.

3.1.2. Random Forest Classification

An RF classification model is an ensemble of tree-type classifiers. Each tree is trained
with bootstrapped samples of the original training data using the classification and regres-
sion tree (CART) method [22]. The majority vote of the trees was used to determine the
classifier output. Regular decision tree classifiers split nodes based on all feature attributes,
whereas the RF algorithm randomly selects a subset of input variables. This random
selection scales many features, and reduces interdependence between variable features;
this decreases the sensitivity of the algorithm to the inherent noise in the data [23,24]. The
number of variables to be selected is a user-defined parameter. This study used the default
value, the square root of the number of inputs, as the model is insensitive to the number
of variables.

The error rate of the RF classifier was dependent on the correlation of any two trees
and the classification strength of each individual tree [24]. The out-of-bag (OOB) error
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rate indicates the extent to which the forest classifier was successful. The OOB model
saves one third of the input dataset to construct the kth tree from the bootstrap sample
of each tree. This leftover sample was used to test the misclassification result of the kth
tree and the average of all trees [24]. Although the OOB error estimates do not require
cross-validation or a separate test set, validation was conducted using a contingency table
to compare models.

3.1.3. Indicator Kriging

IK is a non-parametric type of conditional ordinary kriging that uses local distribution
based on location and data values [25]. It is less sensitive to outlier values, which is
useful in analyzing skewed datasets [26]. This methodology was based on a simple binary
transformation where each data point was converted to 0 or 1 using a pre-determined
threshold: If values were above the threshold, they were 1, and if they were below the
threshold, they were 0. The indicator correlogram was calculated using the transformed
dataset, and values of other regions were estimated to be between 0 and 1. This estimate
refers to the probability of exceeding the selected critical threshold in these regions.

As the distribution ratio of each grade was used as the input data, the generated
results represented the probability of distribution for each grade. The number refers to a
probability value exceeding the specified threshold. The IK estimations were conducted
using the ArcGIS 10.3.1 software package with Geostatistical Analyst Extensions (ESRI,
Redlands, CA, USA).

3.1.4. Multi-Model Ensemble Approach for Tree Vitality Spatialization

We adopted species distribution models (SDMs) to spatialize tree vitality; to the
best of our knowledge, this represents the first attempt to do this. SDMs are numerical
tools that simulate potential species habitats using records on species occurrence and
relevant environmental variables with the associated habitat characteristics [27]. This type
of modeling methodology has long been used to simulate the distribution of species; it
has also been applied in a diverse range of applied fields such as medical diagnostics [28],
landslides [29,30], and forest fires [31]. Thus, this study devised a method by which to use
SDMs to derive the probabilities of occurrence for each grade.

There are a variety of modeling algorithms to construct SDMs, including regression-
based and machine learning-based models; these produce various prediction results for
each model. Accordingly, an “ensemble” that combines predictions from these individual
models has been promoted as a means to reduce uncertainty and improve accuracy [32,33];
as such, an ensemble methodology was applied in this study.

SDMs may be divided into two types based on the required data. The first requires
presence data only, and the second requires good-quality presence/absence data [34–36].
In most situations, the second type shows better performance [37]; however, as accurate
data on absence are difficult to obtain, many previous studies have only used presence-
only data or pseudo-absence data [37,38]. This study used data containing good quality
presence/absence data, as all tree species within a plot have been thoroughly investigated.
The distribution ratio of each grade in the plot was applied as the weight of presence
data when establishing the potential distribution map for each grade. The plot in which a
specific tree vitality grade does not exist may be used as the absence data. Then, weights
for the absence data were assigned as to make the sum of the presence and absence weights
equal. Through this method, the absence data for each grade were shown for different
weights, resulting in greater absence weights given to the higher grade. This difference
in the absence weight for each grade allowed us to overcome the data bias toward the
1st grade.

Seven individual models using presence/absence data were utilized; generalized
linear models (GLMs), generalized additive models (GAMs), classification tree analysis
(CTA), flexible discriminant analysis (FDA), artificial neural networks (ANN), generalized
boosted models (GBM), and RF. We derived the results from each model, and a final map



Forests 2021, 12, 1009 7 of 16

of the potential distribution probability of each grade was established through a weighted
average based on the evaluation scores. Finally, a tree vitality grade map was determined
by overlapping the potential distribution map of each grade. The BIOMOD2 package was
used, as it offers ensemble forecasting software in R [39].

3.2. Predictor Variables

The presence data used were ordinal variables that divide the degree of tree vitality
into five different grades. Thus, it was important to construct predictor variables to be able
to explain the different vitalities for each grade. Moreover, as various spatialization models
are applied, additional analyses of the tendency and contribution of various predictor
variables for each model can be expected. Thus, we collected all available predictor
variables that were able to affect tree vitality, limited by data availability.

Vegetation development is highly sensitive to climatic factors, including temperature
and precipitation [40,41]. Therefore, we collected data on a total of 23 variables reflecting
temperature and/or precipitation characteristics, including 19 bioclimatic variables and
the warmth index (WI), minimum temperature of the coldest month index (MTCI), pre-
cipitation effectiveness index (PEI), and the growing degree days (GDD). Climatic factors
were generated using the climatologies at high resolution for the earth’s land surface areas
(CHELSA) climate dataset V.1.2. (2004–2013). As the intensity and impact of climate factors
vary in terms of different spatial characteristics [42], three main topographic factors, the dig-
ital elevation model (DEM), aspect, and slope, were also considered. Topographic factors
were collected from the National Geographic Information Institute database, supported by
the Ministry of Land, Infrastructure, and Transport with a 90-m resolution.

The soil factor is a variable that is able to assess tree vitality based on tree growth [43].
As various soil characteristics impact vegetation structure and vitality [43,44], all nine
different soil variables available from the World Soil Data (SoilGrids250m 2.0) were collated
for the soil factors.

Remote sensing technology is an alternative to conventional methods for monitoring
forest health and vitality [45]. It has been reported that ratio-based indices may successfully
detect changes in canopy reflectance, reflecting the decline in tree health status [46–48].
Various ratio indices were selected as the final vegetation factors, which include the nor-
malized difference vegetation index (NDVI), atmospherically resistant vegetation index
(ARVI), re-normalized difference vegetation index (RDVI), soil adjusted vegetation in-
dex (SAVI), and simple ratio (SR) [45,49–51]. These indices were selected by reviewing
indices from the Index Data Base (IDB) project operated by the Institute of Crop Science
and Resource Conservation (INRES), Germany. Previous studies [52] have reported that
vegetation indices from various periods (from June to September) are used together by
combining maximum values. Therefore, this study also uses the maximum value of each
vegetation index from June to September, which is the same as the survey period and the
summer season in Korea with the highest vegetation vitality. Landsat-5 and Landsat-7
Surface Reflectance Tier 1 images were used to produce the vegetation indices acquired
from 2011 to 2015 on Google Earth Engine.

Human-mediated impacts were classified as artificial factors. As urbanization con-
tributes to the degradation of forests [53], and traffic pollutants threaten vegetation vital-
ity [54], land cover maps and distances from roads were selected as artificial factors. The
data were collected from the Ministry of Environment and Standard Node Links from the
National Transport Information Center.

All environmental variables were constructed with available data considering forest
survey period (2011–2015) and rescaled at a 1-km2 resolution. A detailed description of the
variables is given in Supplementary Table S1. They were applied to MLR, RF, and MME,
but not to IK.
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3.3. Evaluation

The spatialization results of this study were difficult to verify to the same extent as
the spatialization itself because of the limitations mentioned in Section 3; this was mainly
because the information on several tree species was contained within one sample plot.
Accordingly, we employed a contingency table using the representative values generated
for MLR and RF, and generated external independent data that could indirectly indicate
tree vitality for pattern-wise verification. In the evaluation, 80% of the data was used as
training data, while the remaining 20% was used as test data in the aforementioned models.

3.3.1. Contingency Table (Error Matrix)

Contingency tables for each methodology were developed to compare and analyze
the results. The overall accuracy of the classification is computed using these tables; the
total number of correct pixels were divided by the total number of pixels in the error
matrix. Additionally, we calculated the accuracies of individual grades, including the
accuracy of producers and users. The former indicates how well the grades we assigned
as representative values of plots were reflected in the final vitality map. The accuracy of
users represents the probability that a pixel classified as a specific grade actually represents
that grade on the ground. User accuracy is important as our aim is to construct a tree
vitality map that may be used for national forest management. In particular, the location of
unhealthy forests is a major concern. Therefore, model results were compared focusing on
the accuracy of users for 5th grade.

3.3.2. External Validation with Independent Data

The established tree vitality map was qualitatively verified by comparing its distribu-
tion patterns with other independent data. As there are few available independent data
that spatially indicate tree health, we adopted data that indirectly represents the vitality of
vegetation based on literature reviews for validation.

First, the concept of the vegetation condition index (VCI) was adopted; this is an index
that expresses the state of vegetation within a specific period by comparing with historical
values that represent the best and worst conditions of the vegetation. VCI has been proven
to be a good indicator, particularly when assessing the effect of weather on the condition
or health of vegetation [55–57].

In this study, VCI was constructed using the Moderate Resolution Imaging Spectrora-
diometer (MODIS) NDVI data from the last 20 years (2001 to 2020). Over this period, each
pixel extracted maximum (NDVImax) and minimum (NDVImin) NDVI values representing
the best and worst vegetation conditions, respectively. To determine the health status of
trees in the survey periods, VCI was constructed using the average NDVI (NDVIavg) for
2011–2015 (Equation (1)):

VCI =
NDVIavg − NDVImin
NDVImax − NDVImin

. (1)

As MODIS NDVI was produced at 16-d intervals, 460 satellite images were used for
20 years (e.g., two images per month and 23 images per year). We used the MOD13A2
Version 6 product, which provides NDVI at a 1-km spatial resolution, for comparison with
a tree vitality map as the same resolution. Image processing was conducted using the
Google Earth Engine (http://earthengine.google.com, accessed on 28 April 2021). For
comparative analysis, the VCI was also classified into five grades with the same ratio based
on the proportion of the population by grade.

The established maps were also verified using the bioclimate vulnerability index
(BVI) suggested by [58]. The BVI is an index that evaluates the impact of climate change
on habitat and spatially presents vulnerable areas. BVI quantified the impact of climate
change in terms of moving speed and the area change rate (Equation (2)) of the bioclimatic
zone, which are areas with similar environmental characteristics affecting the habitat and

http://earthengine.google.com
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species [58,59]. The regions with higher BVI are considered as a more vulnerable area to
climate change, which can affect the vitality of vegetation [60]:

BVI =
Moving speed

Future distribution area
Current distribution area

. (2)

Further detailed description for the BVI is provided in Choi et al. (2019). We compared
the spatial distribution patterns of bio-climatically vulnerable areas to regions with low
tree vitality grades.

4. Results
4.1. Tree Vitality Map

The MLR predictions were dominated by 1st grade (Figure 4a); almost all pixels
(96.46%) were classified as 1st grade, whereby the 2nd, 3rd, and 5th grades accounted
for 2.73%, 0.12%, and 0.69%, respectively, and the 4th grade was not given any results.
Although the overall accuracy was relatively high (0.68), most regions were classified as
1st grade. Of the remaining grades, only 5th grade was classified at a similar rate to the
population. The 2nd, 3rd, and 4th grades could not be mapped to obtain a user accuracy
exceeding 6%; this meant that these grades could not be estimated using this methodology
and the given set of predictors. Spatially, the distribution of the 5th grade trees was mainly
found in the southernmost regions of the Taebaek Mountains and near the summit of
Mount Hanlla in the center of Jeju Island. For the 2nd grade, some of the distribution
occurred in the midwest plains and northern Jeju Island.

For RF classification, similar to the MLR map, the 1st grade dominated most regions
(Figure 4b), although the percentage occupied was relatively lower at 90.78%. The user
accuracy was 0.75 or higher in all grades, with a high overall accuracy of 0.926. The
distribution of the 2nd grade was similar to the result of the MLR, although the western
coastal regions of Jeju Island were classified as 3rd grade. In the 4th and 5th grades, only
pixels in which the plot with those grades were located were classified into these grades; as
such, the spatial distribution on the map was almost inconspicuous. This means that the
RF overfits with a high accuracy albeit low utilization.

The IK and MME methodologies simulate the distribution probability for each grade
and reflect the distribution ratio of the population by using prior-probability at the final
map generation; as such, the distribution ratios of grades 1–5 were the same as those of the
population. However, as the representative grade for each plot used for verification was
not directly trained for those models, they showed a lower accuracy compared to MLR
and RF.

IK showed a relatively high user accuracy of 0.642 for the 1st grade and 0.831 for the
2nd grade however, the user accuracy of the 3rd and 4th grades was <0.17. The 5th grade
showed almost zero accuracy. From a spatial perspective, 2nd grade was sporadically
distributed throughout the country in a clustered form, and 3rd grade was allocated in
areas without any spatial characteristics and across Jeju Island. The 4th and 5th grades
were also clustered in small areas (Figure 4c).

The prediction of forest health with MME showed many details corresponding to the
existing knowledge of forests. The results of the ensemble model for each grade using the
weighted mean probability indicated a high accuracy of a performance value (AUC) over
0.9. However, the overall accuracy, achieved using the contingency table, was only 0.465,
due to inconsistent training and validation data. Nevertheless, the user accuracy with the
MME result of the 5th grade was 0.8; this was significantly higher than the other models.
The 2nd, 3rd, and 4th grades also exhibited accuracies exceeding 0.3, indicating that this
MME method was better at predicting lower grades than other models, with the exception
of the overfitted RF. The detailed accuracies by grades for each methodology are provided
in Table 2.
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Figure 4. Tree vitality maps created using: (a) Multinomial logistic regression (MLR); (b) random
forest classification (RF); (c) indicator kriging (IK); and (d) multi-model ensemble (MME).

Table 2. Contingency table of the results.

Grades

Multinomial Logistic
Regression Random Forest Indicator Kriging Multi-Model Ensemble

Producer
Accuracy

User
Accuracy

Producer
Accuracy

User
Accuracy

Producer
Accuracy

User
Accuracy

Producer
Accuracy

User
Accuracy

1 0.680 0.989 0.905 0.995 0.911 0.642 0.753 0.531
2 0.611 0.052 0.982 0.770 0.839 0.831 0.322 0.319
3 1.000 0.028 1.000 0.845 0.074 0.169 0.141 0.324
4 0.000 0.000 1.000 0.813 0.036 0.125 0.107 0.375
5 0.750 0.600 1.000 0.600 0.000 0.000 0.069 0.800

Overall
Accuracy 0.680 0.926 0.637 0.465

The most noticeable result of the MME map is the distribution of the 3rd and 4th
grades in alpine regions, a major mountain range in the ROK (Figure 4d). The 5th grade
appeared sporadically in urban neighborhoods and some of the mountainous areas. The
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southern coastal area and Jeju Island were mainly distributed in 2nd and 3rd grades, while
the northern region of Jeju was noticeably distributed in 4th grade. Although the overall
accuracy was low, the MME results appeared to have the most plausible results that were
likely to be utilized. As such, we further evaluated the MME maps created by comparing
distribution patterns with other external independent data in Section 4.2.

4.2. Validation of the MME Tree Vitality Map

The MME-constructed tree vitality map was compared with the VCI and BVI maps
(Figure 5). All three maps indicate that high-altitude alpine regions are unhealthy or
bio-climatically vulnerable. The VCI of forests distributed in the high mountains of Taebak
and adjacent areas of urban and agricultural lands were relatively low. Jeju Island has a
tendency to lower the VCI with an increasing altitude. The age of trees and the surrounding
environments may also be highly influential for tree vitality. This was reflected in the fact
that the low grades that appeared in the alpine regions were considered to properly reflect
the status of the forest in the ROK; for example, the Taebaek mountains, where very old
forests are mainly distributed, are major protected areas. By contrast, the southern region
showed a relatively high VCI, which differs from the MME result; this may be because the
VCI was created based on NDVI, which is an index highly influenced by tree species, not
solely vegetation health.

Figure 5. (a) MME tree vitality map extracted only from forested areas; (b) VCI; and (c) BVI.

The BVI represented the degree of vulnerability based on changes in the bioclimate
conditions in the 2000s compared to the 1980s; it was found that the most pronounced
changes occurred in the southern coastal and alpine regions, including the Taebak Moun-
tains. The similar distribution trends in the low healthy grade region and the bioclimate
vulnerable region qualitatively demonstrate the validity of the MME method. Overall, we
inferred that climate change is one of the factors that adversely affect the vitality of alpine
and southern regions.

5. Discussion
5.1. Summary Comparison of Methods

The attempted MLR and RF classification in this study spatialized representative
values for each plot; these were assigned using the distribution ratio of each grade for the
population. Although the proportion of grades was the same as the population, almost
all regions were classified as 1st grade as a result of MLR; 2nd, 3rd, and 4th grades were
unsuitable for prediction. Although the RF was overfit with a very high accuracy, only
cells in which the 5th grade sample point was located were classified as this grade. As a
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result, the spatialization results of both methods were not considered appropriate for use
as spatial data for forest management.

For the IK and MME methods, a final grade map was created to reflect the population
ratio after spatializing each grade using the proportion by grade within the sample plot. In
the resultant maps, the distribution of the five grades was better distinguished than the
results of the previous two methodologies. The IK and MME results showed similar spatial
tendencies; the former results were more clustered without showing spatial trends, while
the latter produced results that properly reflected topographic and climatic characteristics.
Comparisons with VCI and BVI demonstrated the usefulness of the MME method. The
difference between the IK and MME results may have been a result of IK predicting only
the distribution probability based on location and data values, while the MME generated
the distribution probability for each grade using environmental predictors that were highly
related to tree vitality. Thus, latter produced a more realistic result.

A close comparison of the results of RF and MME showed that the former predicted
only pixels containing the 5th grade points as being of the 5th grade and classified most
of the surrounding regions as 1st grade however, some MME results classified the areas
around the 5th grade points within a diverse range of grades (Figure 6). This means that the
methodologies utilizing the distribution ratio by grade were more suitable than those using
plot-specific representative values to reflect the impact of the surrounding environment on
predictions of tree vitality.

Figure 6. RF (a) and MME (b) tree vitality maps comparison.

5.2. Implications and Limitations

Although the survey data of individual trees is meaningful in and of itself, forest
management for the country requires area-based forest health assessment as opposed to
point data. Therefore, in this study, we explored various methodologies for spatializing
grade data from field survey data. A representative value for each plot was required for
spatialization therefore, the distribution ratio of the population was utilized in a sample
plot or when the final map was being generated. In addition, it presented a method
involving the distribution ratio of each grade per sample point. These methodologies can
be applied to spatialize other field survey data, such as tree crowns or soil classes. However,
to further improve these approaches, the following should be considered.

First, comprehensive indicators are required to evaluate the health of forests, such
that all sample points may be represented based on various tree data within the plot and
surrounding environment. Although tree vitality was the representative index in this
study, it was difficult to evaluate the overall health of the forest using a sample point as a
single indicator. The spatialization would have been easier if there were clear criteria for
how many or what percentage of declining trees per unit area could be evaluated as an
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unhealthy forest (i.e., those requiring management). Furthermore, if an indicator could
be developed to comprehensively reflect forest health, including crown or soil conditions
and tree vitality, it could be used to construct a more robust and reliable national forest
health map.

Survey data also needs to be more objectified; as the grade of tree vitality is deter-
mined by an expert, it is possible that subjective elements are included depending on the
investigator. Therefore, it would be beneficial to develop a methodology that is able to
objectively evaluate tree health or investigate tree vitality at an interval or ratio scale while
considering spatialization. The convergence of various remote sensing data such as air-
borne and space-borne datasets with in-situ observations is becoming a means to improve
this [13,61]. This study attempted an objective evaluation using various satellite-based
environmental predictors however, further research on the integration of in-situ and RS
monitoring techniques is required to comprehensively assess the status of forest health.

There is also a need to advance environmental predictors. The variables of climate,
soil, artificial, and vegetation factors adopted in this study were constructed with different
spatial and temporal resolutions. This is because it was difficult to secure high-resolution
data on a national scale corresponding to 2011–2015, the same period when the FHM
survey was conducted. Accordingly, among the data available to cover the whole country,
we used data constructed at the most similar to the forest survey period by resampling
them into a 1-km resolution. This temporal and spatial mismatch may raise uncertainty in
the results [62]. Therefore, future studies need to construct and use datasets that match
well spatially and temporally with the survey plot in order to create a more accurate forest
health map.

Finally, further verification is required to examine whether this methodology can
be adopted for managing national forests. In other words, in-situ verification in areas
other than sample survey points is required to identify whether forests with a low grade
are actually less vital than those assigned to higher grades. It may be useful to produce
thematic maps representing national forest health that can represent the actual status of
forests and allow their changing trends to be updated continuously.

6. Conclusions

This study examined four methods to construct an area-based map of tree vitality
using field survey data as a way of contributing to managing national forests. It also
used MRL and RF—methods used to project nominal data—to generate representative
values of sample points needed, to evaluate tree vitality grades in regions for which no
measurements were available; a new approach was also suggested that used the IK and
MME of species distribution models with the distribution ratio of each grade. MRL, RF,
and MME employed remotely-sensed environmental datasets. The study showed that RF,
in particular, had high accuracy, but underutilized results, while MME proved reasonable
based on comparisons with other independent data.

Notably, we found that it is more appropriate to utilize various class information
within a sample point for spatialization than using a representative value for each plot.
Trees in the alpine or high-altitude regions in the ROK were found to have low vitality, sug-
gesting that the area requires closer investigation and management. This study attempted
to enhance the utilization of forest survey data for forest management by integrating
various techniques and remotely-sensed environmental predictors.
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